Singh, J. S. The biodiversity crisis: A multifaceted review. Curr. Sci. 82(6), 638–647 (2002).
Mateo-Tomás, P. & López-Bao, J. V. A nuclear future for biodiversity conservation?. Biol. Conserv. 270, 109559. https://doi.org/10.1016/j.biocon.2022.109559 (2022).
Google Scholar
Humphreys, A. M., Govaerts, R., Ficinski, S. Z., Nic Lughadha, E. & Vorontsova, M. S. Global dataset shows geography and life form predict modern plant extinction and rediscovery. Nat. Ecol. Evol. 3(7), 1043–1047. https://doi.org/10.1038/s41559-019-0906-2 (2019).
Google Scholar
Larsen, B. B., Miller, E. C., Rhodes, M. K. & Wiens, J. J. Inordinate fondness multiplied and redistributed: The number of species on earth and the new pie of life. Q. Rev. Biol. 92(3), 229–265. https://doi.org/10.1086/693564 (2017).
Google Scholar
Lewin, H. A. et al. The earth BioGenome project 2020: Starting the clock. Proc. Natl. Acad. Sci. 119(4), e2115635118. https://doi.org/10.1073/pnas.211563511 (2022).
Google Scholar
Prugh, L. R., Sinclair, A. R. E., Hodges, K. E., Jacob, A. L. & Wilcove, D. S. Reducing threats to species: Threat reversibility and links to industry. Conserv. Lett. 3(4), 267–276. https://doi.org/10.1111/j.1755-263X.2010.00111.x (2010).
Google Scholar
McCune, J. L. et al. Threats to Canadian species at risk: An analysis of finalized recovery strategies. Biol. Cons. 166, 254–265. https://doi.org/10.1016/j.biocon.2013.07.006 (2013).
Google Scholar
Dong, S. Y. Hainan tree ferns (Cyatheaceae), morphological, ecological and phytogeographical observations. Ann. Bot. Fenn. 46(5), 381–388. https://doi.org/10.5735/085.046.0502 (2009).
Google Scholar
Liu, Y., Wujisguleng, W. & Long, C. Food uses of ferns in China: A review. Acta Soc. Bot. Pol. 81(4), 263–270. https://doi.org/10.5586/asbp.2012.046 (2012).
Google Scholar
Korall, P., Pryer, K. M., Metzgar, J. S., Schneider, H. & Conant, D. S. Tree ferns: monophyletic groups and their relationships as revealed by four protein-coding plastid loci. Mol. Phylogenet. Evol. 39(3), 830–845. https://doi.org/10.1016/j.ympev.2006.01.001 (2006).
Google Scholar
Gu, Y. F., Jiang, R. H., Liu, B. D. & Yan, Y. H. Sphaeropteris guangxiensis YF Gu & YH Yan (Cyatheaceae), a new species of tree fern from Southern China. Phytotaxa 518(1), 69–74. https://doi.org/10.11646/phytotaxa.518.1.8 (2021).
Google Scholar
Ho, Y. W., Huang, Y. L., Chen, J. C. & Chen, C. T. Habitat environment data and potential habitat interpolation of Cyathea lepifera at the Tajen Experimental Forest Station in Taiwan. Trop. Conserv. Sci. 9(1), 153–166. https://doi.org/10.1177/194008291600900108 (2016).
Google Scholar
Wei, X. et al. Inferring the potential geographic distribution and reasons for the endangered status of the tree fern, Sphaeropteris lepifera, in Lingnan, China using a small sample size. Horticulturae 7(11), 496. https://doi.org/10.3390/horticulturae7110496 (2021).
Google Scholar
Ida, N., Iwasaki, A., Teruya, T., Suenaga, K. & Kato-Noguchi, H. Tree fern Cyathea lepifera may survive by its phytotoxic property. Plants 9(1), 46. https://doi.org/10.3390/plants9010046 (2019).
Google Scholar
Huang, Y. M., Ying, S. S. & Chiou, W. L. Morphology of gametophytes and young sporophytes of Sphaeropteris lepifera. Am. Fern J. 90(4), 127–137. https://doi.org/10.2307/1547489 (2000).
Google Scholar
Fu, C. H. et al. Ophiodiaporthe cyatheae gen. et sp. Nov., a diaporthalean pathogen causing a devastating wilt disease of Cyathea lepifera in Taiwan. Mycologia 105(4), 861–872. https://doi.org/10.3852/12-346 (2013).
Google Scholar
Kirschner, R., Lee, P. H. & Huang, Y. M. Diversity of fungi on Taiwanese fern plants: Review and new discoveries. Taiwania 64(2), 163–175. https://doi.org/10.6165/tai.2019.64.163 (2019).
Google Scholar
Farrar, D. R. Gametophyte morphology and breeding systems in ferns. In Pteridology in the New Millennium Vol. 30 (eds Chandra, S. & Srivastava, M.) 447–454 (Springer, 2003). https://doi.org/10.1007/978-94-017-2811-9_30.
Google Scholar
Kuriyama, A., Kobayashi, T. & Maeda, M. Production of sporophytic plants of Cyathea lepifera, a tree fern, from in vitro cultured gametophyte. Eng. Gakkai zasshi 73(2), 140–142. https://doi.org/10.2503/jjshs.73.140 (2008).
Google Scholar
García, M. B. Demographic viability of a relict population of the critically endangered plant Borderea chouardii. Conserv. Biol. 17(6), 1672–1680. https://doi.org/10.1111/j.1523-1739.2003.00030.x (2003).
Google Scholar
Chen, Y. S., Deng, T., Zhou, Z. & Sun, H. Is the East Asian flora ancient or not?. Natl. Sci. Rev. 5(6), 920–932. https://doi.org/10.1093/nsr/nwx156 (2018).
Google Scholar
Fennessy, J. et al. Response to “How many species of giraffe are there?”. Curr. Biol. 27(4), 137–138. https://doi.org/10.1016/j.cub.2016.12.045 (2017).
Google Scholar
Daniell, H., Lin, C. S., Yu, M. & Chang, W. J. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biol. 17(1), 1–29. https://doi.org/10.1186/s13059-016-1004-2 (2016).
Google Scholar
Asaf, S. et al. Complete chloroplast genome of Nicotiana otophora and its comparison with related species. Front. Plant Sci. 7, 843. https://doi.org/10.3389/fpls.2016.00843 (2016).
Google Scholar
Daniell, H. et al. Green giant: A tiny chloroplast genome with mighty power to produce high-value proteins—History and phylogeny. Plant Biotechnol. J. 19(3), 430–447. https://doi.org/10.1111/pbi.13556 (2021).
Google Scholar
Martin, G. E. et al. The first complete chloroplast genome of the Genistoid legume Lupinus luteus: Evidence for a novel major lineage-specific rearrangement and new insights regarding plastome evolution in the legume family. Ann. Bot. 113(7), 1197–1210. https://doi.org/10.1093/aob/mcu050 (2014).
Google Scholar
Xu, C. et al. Comparative analysis of six Lagerstroemia complete chloroplast genomes. Front. Plant Sci. 8, 15. https://doi.org/10.3389/fpls.2017.00015 (2017).
Google Scholar
Henriquez, C. L. et al. Molecular evolution of chloroplast genomes in Monsteroideae (Araceae). Planta 251(3), 1–16. https://doi.org/10.1007/s00425-020-03365-7 (2020).
Google Scholar
Huang, X. et al. The flying spider-monkey tree fern genome provides insights into fern evolution and arborescence. Nat. Plants 8(5), 500–512. https://doi.org/10.1038/s41477-022-01146-6 (2022).
Google Scholar
Dobrogojski, J., Adamiec, M. & Luciński, R. The chloroplast genome: A review. Acta Physiol. Plant. 42(6), 1–13. https://doi.org/10.1007/s11738-020-03089-x (2020).
Google Scholar
Oda, K. et al. Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA: A primitive form of plant mitochondrial genome. J. Mol. Biol. 223(1), 1–7. https://doi.org/10.1016/0022-2836(92)90708-R (1992).
Google Scholar
Ohyama, K. et al. Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322(6079), 572–574. https://doi.org/10.1038/322572a0 (1986).
Google Scholar
Gao, L., Yi, X., Yang, Y. X., Su, Y. J. & Wang, T. Complete chloroplast genome sequence of a tree fern Alsophila spinulosa: insights into evolutionary changes in fern chloroplast genomes. BMC Evol. Biol. 9(1), 1–14. https://doi.org/10.1186/1471-2148-9-130 (2009).
Google Scholar
Wang, T., Hong, Y., Wang, Z. & Su, Y. Characterization of the complete chloroplast genome of Alsophila gigantea (Cyatheaceae), an ornamental and CITES giant tree fern. Mitochondrial DNA Part B 4(1), 967–968. https://doi.org/10.1080/23802359.2019.1580162 (2019).
Google Scholar
Jia, Q. et al. A “GC-rich” method for mammaliangene expression: A dominant role of non-coding DNA GC content in regulation of mammalian gene expression. Sci. China Life Sci. 53, 94–100. https://doi.org/10.1007/s11427-010-0003-x (2010).
Google Scholar
Liu, H. et al. Comparative analyses of chloroplast genomes provide comprehensive insights into the adaptive evolution of Paphiopedilum (Orchidaceae). Horticulturae 8(5), 391. https://doi.org/10.3390/horticulturae8050391 (2022).
Google Scholar
Liu, C. K., Lei, J. Q., Jiang, Q. P., Zhou, S. D. & He, X. J. The complete plastomes of seven Peucedanum plants: Comparative and phylogenetic analyses for the Peucedanum genus. BMC Plant Biol. 22(1), 1–14. https://doi.org/10.1186/s12870-022-03488-x (2022).
Google Scholar
Han, H. et al. Analysis of chloroplast genomes provides insights into the evolution of agropyron. Front. Genet. 13, 832809. https://doi.org/10.3389/fgene.2022.832809 (2022).
Google Scholar
Hanaoka, M., Kanamaru, K., Takahashi, H. & Tanaka, K. Molecular genetic analysis of chloroplast gene promoters dependent on SIG2, a nucleus-encoded sigma factor for the plastid-encoded RNA polymerase Arabidopsis thaliana. Nucleic Acids Res. 31(24), 7090–7098. https://doi.org/10.1093/nar/gkg935 (2003).
Google Scholar
Sato, S., Nakamura, Y., Kaneko, T., Asamizu, E. & Tabata, S. Complete structure of the chloroplast genome of Arabidopsis thaliana. DNA Res. 6(5), 283–290. https://doi.org/10.1093/dnares/6.5.283 (1999).
Google Scholar
Tian, S. et al. Repeated range expansions and inter-/postglacial recolonization routes of Sargentodoxa cuneata (Oliv.) Rehd. et Wils. (Lardizabalaceae) in subtropical China revealed by chloroplast phylogeography. Mol. Phylogenet. Evol. 85, 238–246. https://doi.org/10.1016/j.ympev.2015.02.016 (2015).
Google Scholar
Ohme, M., Kamogashira, T., Shinozaki, K. & Sugiura, M. Structure and cotranscription of tobacco chloroplast genes for tRNA Glu (UUC), tRNA Tyr (GUA) and tRNA Asp (GUC). Nucleic Acids Res. 13(4), 1045–1056. https://doi.org/10.1093/nar/13.4.1045 (1985).
Google Scholar
Wang, Z. et al. Comparative analysis of codon usage patterns in chloroplast genomes of six Euphorbiaceae species. PeerJ 8, 8251. https://doi.org/10.7717/peerj.8251 (2020).
Google Scholar
Pop, C. et al. Causal signals between codon bias, mRNA structure, and the efficiency of translation and elongation. Mol. Syst. Biol. 10(12), 770. https://doi.org/10.15252/msb.20145524 (2014).
Google Scholar
Verma, D. & Daniell, H. Chloroplast vector systems for biotechnology applications. Plant Physiol. 145(4), 1129–1143. https://doi.org/10.1104/pp.107.106690 (2007).
Google Scholar
Bock, R. Engineering plastid genomes: Methods, tools, and applications in basic research and biotechnology. Annu. Rev. Plant Biol. 66(1), 211–241. https://doi.org/10.1146/annurev-arplant-050213-040212 (2015).
Google Scholar
Tang, D. et al. Analysis of codon usage bias and evolution in the chloroplast genome of Mesona chinensis Benth. Dev. Genes. Evol. 231(1), 1–9. https://doi.org/10.1007/s00427-020-00670-9 (2021).
Google Scholar
Zhang, Y. et al. Codon usage patterns across seven Rosales species. BMC Plant Biol. 22(1), 1–10. https://doi.org/10.1186/s12870-022-03450-x (2022).
Google Scholar
Li, B., Lin, F., Huang, P., Guo, W. & Zheng, Y. Development of nuclear SSR and chloroplast genome markers in diverse Liriodendron chinense germplasm based on low-coverage whole genome sequencing. Biol. Res. 53(1), 1–12. https://doi.org/10.1186/s40659-020-00289-0 (2020).
Google Scholar
Wang, R. et al. Genome survey sequencing of Acer truncatum Bunge to identify genomic information, simple sequence repeat (SSR) markers and complete chloroplast genome. Forests 10(2), 87. https://doi.org/10.3390/f10020087 (2019).
Google Scholar
Zhu, M. et al. Phylogenetic significance of the characteristics of simple sequence repeats at the genus level based on the complete chloroplast genome sequences of Cyatheaceae. Ecol. Evol. 11(20), 14327–14340. https://doi.org/10.1002/ece3.8151 (2021).
Google Scholar
Hong, Z. et al. Comparative analyses of five complete chloroplast genomes from the genus Pterocarpus (Fabacaeae). Int. J. Mol. Sci. 21(11), 3758. https://doi.org/10.3390/ijms21113758 (2020).
Google Scholar
Ping, J. et al. Molecular evolution and SSRs analysis based on the chloroplast genome of Callitropsis funebris. Ecol. Evol. 11(9), 4786–4802. https://doi.org/10.1002/ece3.7381 (2021).
Google Scholar
Kim, Y., Park, J. & Chung, Y. Comparative analysis of chloroplast genome of Dysphania ambrosioides (L.) Mosyakin & Clemants understanding phylogenetic relationship in genus Dysphania R. B.. Korean J. Plant Resour. 32(6), 644–668. https://doi.org/10.7732/kjpr.2019.32.6.644 (2019).
Google Scholar
Guo, Y. Y., Yang, J. X., Li, H. K. & Zhao, H. S. Chloroplast genomes of two species of Cypripedium: Expanded genome size and proliferation of AT-biased repeat sequences. Front. Plant Sci. 12, 609729. https://doi.org/10.3389/fpls.2021.609729 (2021).
Google Scholar
Henriquez, C. L. et al. Evolutionary dynamics of chloroplast genomes in subfamily Aroideae (Araceae). Genomics 112(3), 2349–2360. https://doi.org/10.1016/j.ygeno.2020.01.006 (2020).
Google Scholar
Dong, S. et al. Nuclear loci developed from multiple transcriptomes yield high resolution in phylogeny of scaly tree ferns (Cyatheaceae) from China and Vietnam. Mol. Phylogenet. Evol. 139, 106567. https://doi.org/10.1016/j.ympev.2019.106567 (2019).
Google Scholar
Rohde, K. Latitudinal gradients in species diversity: The search for the primary cause. Oikos 65, 514–527. https://doi.org/10.2307/3545569(1992) (1992).
Google Scholar
Raven, J. A., Beardall, J., Larkum, A. W. D. & Sánchez-Baracaldo, P. Interactions of photosynthesis with genome size and function. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120264. https://doi.org/10.1098/rstb.2012.0264 (2013).
Google Scholar
Barber, J., Nield, J., Morris, E. P., Zheleva, D. & Hankamer, B. The structure, function and dynamics of photosystem two. Physiol. Plant. 100(4), 817–827. https://doi.org/10.1111/j.1399-3054.1997.tb00008.x (1997).
Google Scholar
Yang, Z., Wong, W. S. & Nielsen, R. Bayes empirical Bayes inference of amino acid sites under positive selection. Mol. Biol. Evol. 22(4), 1107–1118. https://doi.org/10.1093/molbev/msi097 (2005).
Google Scholar
Li, W. et al. Interspecific chloroplast genome sequence diversity and genomic resources in Diospyros. BMC Plant Biol. 18(1), 1–11. https://doi.org/10.1186/s12870-018-1421-3 (2018).
Google Scholar
Duan, H. et al. Comparative chloroplast genomics of the genus Taxodium. BMC Genom. 21(1), 1–14. https://doi.org/10.1186/s12864-020-6532-1 (2020).
Google Scholar
Jiao, Y. et al. Complete chloroplast genomes of 14 subspecies of D. glomerata: Phylogenetic and comparative genomic analyses. Genes 13(9), 1621. https://doi.org/10.3390/genes13091621 (2022).
Google Scholar
Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19(5), 455–477. https://doi.org/10.1089/cmb.2012.0021 (2012).
Google Scholar
Boetzer, M. & Pirovano, W. Toward almost closed genomes with GapFiller. Genome Biol. 13(6), 1–9. https://doi.org/10.1186/gb-2012-13-6-r56 (2012).
Google Scholar
Tamura, K., Dudley, J., Nei, M. & Kumar, S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24(8), 1596–1599. https://doi.org/10.1093/molbev/msm092 (2007).
Google Scholar
Source: Ecology - nature.com