in

Diel variations in planktonic ciliate community structure in the northern South China Sea and tropical Western Pacific

  • Lynn, D. H. Ciliated Protozoa: Characterization, Classification, and Guide to the Literature 3rd edn, 1–455 (Springer, 2008).

    Google Scholar 

  • Stoecker, D. K., Michaels, A. E. & Davis, L. H. Grazing by the jellyfish, Aurelia aurita, on microzooplankton. J. Plankton Res. 9, 901–915 (1987).

    Article 

    Google Scholar 

  • Dolan, J. R., Vidussi, F. & Claustre, H. Planktonic ciliates in the Mediterranean Sea: Longitudinal trends. Deep-Sea Res. I(46), 2025–2039 (1999).

    Article 

    Google Scholar 

  • Gómez, F. Trends on the distribution of ciliates in the open Pacific Ocean. Acta Oecol. 32, 188–202 (2007).

    Article 
    ADS 

    Google Scholar 

  • Azam, F. et al. The ecological role of water column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).

    Article 
    ADS 

    Google Scholar 

  • Pierce, R. W. & Turner, J. T. Ecology of planktonic ciliates in marine food webs. Rev. Aquat. Sci. 6, 139–181 (1992).

    Google Scholar 

  • Calbet, A. & Saiz, E. The ciliate-copepod link in marine ecosystems. Aquat. Microb. Ecol. 38, 157–167 (2005).

    Article 

    Google Scholar 

  • Kim, Y. O. et al. Tintinnid species as biological indicators for monitoring intrusion of the warm oceanic waters into Korean coastal waters. Ocean Sci. J. 47, 161–172 (2012).

    Article 
    ADS 

    Google Scholar 

  • Wang, C. F. et al. Impact of the warm eddy on planktonic ciliate, with an emphasis on tintinnids as bioindicator species. Ecol. Indic. 133, 108441 (2021).

    Article 

    Google Scholar 

  • Wang, C. F. et al. Planktonic tintinnid community structure variations in different water masses of the Arctic Basin. Front. Mar. Sci. 8, 775653 (2022).

    Article 

    Google Scholar 

  • Haney, J. F. Diel patterns of zooplankton behavior. Bull. Mar. Sci. 43, 583–603 (1988).

    ADS 

    Google Scholar 

  • Vaulot, D. & Marie, D. Diel variability of photosynthetic picoplankton in the equatorial Pacific. J. Geophys. Res-Oceans 104, 3297–3310 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hays, G. C., Webb, P. I. & Frears, S. L. Diet changes in the carbon and nitrogen content of the copepod Metridia lucens. J. Plankton Res. 4, 727–737 (1998).

    Article 

    Google Scholar 

  • Hays, G. C., Harris, R. P. & Head, R. N. Diel changes in the near-surface biomass of zooplankton and the carbon content of vertical migrants. Deep-Sea Res. II(48), 1063–1068 (2001).

    ADS 

    Google Scholar 

  • Anna, A., Enric, S. & Albert, C. Towards an understanding of diel feeding phythms in marine protists: Consequences of light manipulation. Microb. Ecol. 79, 64–72 (2020).

    Article 

    Google Scholar 

  • Vaulot, D., Marie, D., Olson, R. J. & Chisholm, S. W. Growth of Prochlorococcus, a photosynthetic prokaryote, in the equatorial Pacific Ocean. Science 268, 1480–1482 (1995).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Binder, B. J. & DuRand, M. D. Diel cycles in surface waters of the equatorial Pacific. Deep-Sea Res. II(49), 2601–2617 (2002).

    ADS 

    Google Scholar 

  • Li, C. L. et al. Quasi-antiphase diel patterns of abundance and cell size/biomass of picophytoplankton in the oligotrophic ocean. Geophys. Res. Lett. 49, e2022GL097753 (2022).

    ADS 

    Google Scholar 

  • Ohman, M. D. The demographic benefits of diel vertical migration by zooplankton. Ecol. Monogr. 60, 257–281 (1990).

    Article 

    Google Scholar 

  • Ringelberg, J. The photo behavior of Daphnia spp. as a model to explain diel vertical migration in zooplankton. Biol. Rev. 74, 397–423 (1999).

    Article 

    Google Scholar 

  • Tarling, G. A., Jarvis, T., Emsley, S. M. & Matthews, J. B. L. Midnight sinking behaviour in Calanus finmarchicus: A response to satiation or krill predation?. Mar. Ecol. Prog. 240, 183–194 (2002).

    Article 

    Google Scholar 

  • Cohen, J. H. & Forward, R. B. Diel vertical migration of the marine copepod Calanopia americana. I. Twilight DVM and its relationship to the diel light cycle. Mar. Biol. 147, 387–398 (2005).

    Article 

    Google Scholar 

  • Cohen, J. H. & Forward, R. B. Diel vertical migration of the marine copepod Calanopia americana. II. Proximate role of exogenous light cues and endogenous rhythms. Mar. Biol. 147, 399–410 (2005).

    Article 

    Google Scholar 

  • Ringelberg, J. Diel Vertical Migration of Zooplankton in Lakes and Oceans 1–347 (Springer, 2010).

    Google Scholar 

  • Liu, H. J., Zhu, M. L., Guo, S. J., Zhao, X. H. & Sun, X. X. Effects of an anticyclonic eddy on the distribution and community structure of zooplankton in the South China Sea northern slope. J. Mar. Syst. 205, 103311 (2020).

    Article 

    Google Scholar 

  • Tao, Z. C. et al. The diel vertical distribution and carbon biomass of the zooplankton community in the Caroline Seamount area of the western tropical Pacific Ocean. Sci. Rep. 12, 18908 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dale, T. Diel vertical distribution of planktonic ciliates in Lindåspollene, Western Norway. Mar. Microb. Food Webs 2, 15–28 (1987).

    Google Scholar 

  • Jonsson, P. R. Vertical distribution of planktonic ciliates–an experimental analysis of swimming behavior. Mar. Ecol. Prog. Ser. 52, 39–53 (1989).

    Article 
    ADS 

    Google Scholar 

  • Stocker, D. K., Taniguchi, A. & Michaels, A. E. Abundance of autotrophic, mixotrophic and heterotrophic ciliates in shelf and slope waters. Mar. Ecol. Prog. Ser. 50, 241–254 (1989).

    Article 
    ADS 

    Google Scholar 

  • Passow, U. Vertical migration of Gonyaulax catenata and Mesodinium rubrum. Mar. Biol. 110, 455–463 (1991).

    Article 

    Google Scholar 

  • Suzuki, T. & Taniguchi, A. Temporal change of clustered distribution of planktonic ciliates in Toyama Bay in summers of 1989 and 1990. J. Oceanogr. 53, 35–40 (1997).

    Article 
    CAS 

    Google Scholar 

  • Olli, K. Diel vertical migration of phytoplankton and heterotrophic flagellates in the Gulf of Riga. J. Mar. Syst. 23, 145–163 (1999).

    Article 

    Google Scholar 

  • Pérez, M. T., Dolan, J. R., Vidussi, F. & Fukai, E. Diel vertical distribution of planktonic ciliates within the surface layer of the NW Mediterrean (May 1995). Deep-Sea Res. I(47), 479–503 (2000).

    Article 

    Google Scholar 

  • Rossberg, M. & Wickham, S. A. Ciliate vertical distribution and diel vertical migration in a eutrophic lake. Fund. Appl. Limnol. 171, 1–14 (2008).

    Article 

    Google Scholar 

  • Gu, B. W. et al. High dynamics of ciliate community revealed via short-term, high-frequency sampling in a subtropical estuarine ecosystem. Front. Microbiol. 13, 797638 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Su, J. L. Overview of the South China Sea circulation and its influence on the coastal physical oceanography near the Pearl River Estuary. Cont. Shelf Res. 24, 1745–1760 (2004).

    Article 

    Google Scholar 

  • Cravatte, S., Delcroix, T., Zhang, D., Mcphaden, M. & Leloup, J. Observed freshening and warming of the western pacific warm pool. Clim. Dyn. 33, 565–589 (2009).

    Article 

    Google Scholar 

  • Feng, M. P., Zhang, W. C., Yu, Y., Xiao, T. & Sun, J. Horizontal distribution of tintinnids in the western South China Sea during summer 2007. J. Trop. Oceanogr. 32, 86–92 (2013).

    Google Scholar 

  • Liu, H. X. et al. Composition and distribution of planktonic ciliates in the southern South China Sea during late summer: Comparison between surface and 75 m deep layer. J. Ocean Univ. China 15, 171–176 (2016).

    Article 
    ADS 

    Google Scholar 

  • Wang, C. F. et al. Vertical distribution of planktonic ciliates in the oceanic and slope areas of the western Pacific Ocean. Deep-Sea Res. II(167), 70–78 (2019).

    Google Scholar 

  • Sun, P., Zhang, S. L., Wang, Y. & Huang, B. Q. Biogeographic role of the Kuroshio Current Intrusion in the microzooplankton community in the boundary zone of the northern South China Sea. Microorganisms 9, 1104 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sohrin, R., Imazawa, M., Fukuda, H. & Suzuki, Y. Full-depth profiles of prokaryotes, heterotrophic nanoflagellates, and ciliates along a transect from the equatorial to the subarctic central Pacific Ocean. Deep-Sea Res. II(57), 1537–1550 (2010).

    ADS 

    Google Scholar 

  • Wang, C. F. et al. Difference of planktonic ciliate communities of the tropical West Pacific, the Bering Sea and the Arctic Ocean. Acta Oceanol. Sin. 39, 9–17 (2020).

    Article 
    CAS 

    Google Scholar 

  • Wang, C. F. et al. Planktonic ciliate trait structure variation over Yap, Mariana and Caroline seamounts in the tropical western Pacific Ocean. J. Oceanol. Limnol. 39, 1705–1717 (2021).

    Article 
    ADS 

    Google Scholar 

  • McLaren, I. A. Demographic strategy of vertical migration by a marine copepod. Amer. Nat. 108, 91–102 (1974).

    Article 

    Google Scholar 

  • Loose, C. J., Von Elert, E. & Dawidowicz, P. Chemically-induced diel vertical migration in Daphnia: A new bioassay for kairomones exuded by fish. Arch. Hydrobiol. 126, 329–337 (1993).

    Article 

    Google Scholar 

  • Bandara, K., Varpe, Ø., Wijewardene, L., Tverberg, V. & Eiane, K. Two hundred years of zooplankton vertical migration research. Biol. Rev. 96, 1–43 (2021).

    Article 

    Google Scholar 

  • Oubelkheir, K. & Sciandra, A. Diel variations in particle stocks in the oligotrophic waters of the Ionian Sea (Mediterranean). J. Mar. Syst. 74, 364–371 (2008).

    Article 

    Google Scholar 

  • Yang, E. J., Choi, J. K. & Hyun, J. H. Distribution and structure of heterotrophic protist communities in the northeast equatorial Pacific Ocean. Mar. Biol. 146, 1–15 (2004).

    Article 

    Google Scholar 

  • Wang, C. F. et al. Planktonic ciliate community structure and its distribution in the oxygen minimum zones in the Bay of Bengal (Eastern Indian Ocean). J. Sea Res. 190, 102311 (2022).

    Article 

    Google Scholar 

  • Daro, M. H. Migratory and grazing behavior of copepods and vertical distribution of phytoplankton. Bull. Mar. Sci. 43, 710–729 (1988).

    Google Scholar 

  • Ursella, L., Cardin, V., Batistić, M., Garić, R. & Gačić, M. Evidence of zooplankton vertical migration from continuous Southern Adriatic buoy current-meter records. Prog. Oceanogr. 167, 78–96 (2018).

    Article 
    ADS 

    Google Scholar 

  • Roman, M. R., Dam, H. G., Le Borgne, R. & Zhang, X. Latitudinal comparisons of equatorial Pacific zooplankton. Deep-Sea Res. II(49), 2695–2711 (2002).

    ADS 

    Google Scholar 

  • Steinberg, D. K., Cope, J. S., Wilson, S. E. & Kobari, T. A comparison of mesopelagic mesozooplankton community structure in the subtropical and subarctic North Pacific Ocean. Deep-Sea Res. II(55), 1615–1635 (2008).

    ADS 

    Google Scholar 

  • Isla, A., Scharek, R. & Latasa, M. Zooplankton diel vertical migration and contribution to deep active carbon flux in the NW Mediterranean. J. Mar. Syst. 143, 86–97 (2015).

    Article 

    Google Scholar 

  • Dolan, J. R. Morphology and ecology in tintinnid ciliates of the marine plankton: Correlates of lorica dimensions. Acta Protozoologica 49, 235–244 (2010).

    Google Scholar 

  • Jacquet, S., Partensky, F., Lennon, J. F. & Vaulot, D. Diel patterns of growth and division in marine picoplankton in culture. J. Phycol. 37, 357–369 (2001).

    Article 

    Google Scholar 

  • Pitta, P., Giannakourou, A. & Christaki, U. Planktonic ciliates in the oligotrophic Mediterranean Sea: Longitudinal trends of standing stocks, distributions and analysis of food vacuole contents. Aquat. Microb. Ecol. 24, 297–311 (2001).

    Article 

    Google Scholar 

  • Weisse, T. & Montagnes, D. J. S. Ecology of planktonic ciliates in a changing world: Concepts, methods, and challenges. J. Eukaryot. Microbiol. 69, e12879 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Heinbokel, J. F. Diel periodicities and rates of reproduction in natural populations of tintinnines in the oligotrophic waters off Hawaii, September 1982. Mar. Microb. Food Webs 2, 1–14 (1987).

    Google Scholar 

  • Tsai, A. Y., Chiang, K. P., Chang, J. & Gong, G. C. Seasonal diel variations of picoplankton and nanoplankton in a subtropical western Pacific coastal ecosystem. Limnol. Oceanogr. 50, 1221–1231 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ribalet, F. et al. Light-driven synchrony of Prochlorococcus growth and mortality in the subtropical Pacific gyre. Proc. Natl. Acad. Sci. U. S. A. 112, 8008–8012 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Connell, P. E., Ribalet, F., Armbrust, E. V., White, A. & Caron, D. A. Diel oscillations in the feeding activity of heterotrophic and mixotrophic nanoplankton in the North Pacific Subtropical Gyre. Aquat. Microb. Ecol. 85, 167–181 (2020).

    Article 

    Google Scholar 

  • Cheung, K. C., Poon, B., Lan, C. Y. & Wong, M. H. Assessment of metal and nutrient concentrations in river water and sediment collected from the cities in the Pearl River Delta, South China. Chemosphere 52, 1431–1440 (2003).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Huang, X. P., Huang, L. M. & Yue, W. Z. The characteristics of nutrients and eutrophication in the Pearl River estuary. South China. Mar. Pollut. Bull. 47, 30–36 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, S. M. et al. Nutrient dynamics in the winter thermohaline frontal zone of the northern shelf region of the South China Sea. J. Geophys. Res. 115, C11020 (2010).

    Article 
    ADS 

    Google Scholar 

  • Shu, Y. Q., Wang, Q. & Zu, T. T. Progress on shelf and slope circulation in the northern South China Sea. Sci. China Earth Sci. 61, 560–571 (2018).

    Article 
    ADS 

    Google Scholar 

  • Dai, S. et al. The effects of a warm-core eddy on chlorophyll a distribution and phytoplankton community structure in the northern South China Sea in spring 2017. J. Mar. Syst. 210, 103396 (2020).

    Article 

    Google Scholar 

  • He, X. Q. et al. Eddy-entrained Pearl River plume into the oligotrophic basin of the South China Sea. Cont. Shelf Res. 124, 117–124 (2016).

    Article 
    ADS 

    Google Scholar 

  • Pan, X. J. et al. Remote sensing of surface [nitrite + nitrate] in river-influenced shelf-seas: The northern South China Sea Shelf-sea. Remote Sens. Environ. 210, 1–11 (2018).

    Article 
    ADS 

    Google Scholar 

  • Xu, J. et al. Phosphorus limitation in the northern South China Sea during late summer: Influence of the Pearl River. Deep-Sea Res. I. 55, 1330–1342 (2008).

    Article 
    CAS 

    Google Scholar 

  • Caron, D. Inorganic nutrients, bacteria, and the microbial loop. Microb. Ecol. 28, 295–298 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kirchman, D. The uptake of inorganic nutrients by heterotrophic bacteria. Microb. Ecol. 28, 255–271 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Song, J. M. Biogeochemical Processes of Biogenic Elements in China Marginal Seas 1–657 (Springer, 2011).

    Google Scholar 

  • Zhang, W. C. et al. Review of nutrient (nitrogen and phosphorus) regeneration in the marine pelagic microbial food web. Mar. Sci. Bull. 35, 241–251 (2016).

    CAS 

    Google Scholar 

  • Ma, J. et al. Effects of Y3 seamount on nutrients influencing the ecological environment in the Western Pacific Ocean. Earth Sci. Front. 27, 322–331 (2020).

    Google Scholar 

  • Li, H. B. et al. Tintinnid diversity in the tropical West Pacific Ocean. Acta Oceanol. Sin. 37, 218–228 (2018).

    Article 
    CAS 

    Google Scholar 

  • Dolan, J. R., Ritchie, M. E. & Ras, J. The, “neutral” community structure of planktonic herbivores, tintinnid ciliates of the microzooplankton, across the SE Tropical Pacific Ocean. Biogeosciences 4, 297–310 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Dolan, J. R., Ritchie, M. E., Tunin-Ley, A. & Pizay, M. Dynamics of core and occasional species in the marine plankton: Tintinnid ciliates in the north-west Mediterranean Sea. J. Biogeogr. 36, 887–895 (2009).

    Article 

    Google Scholar 

  • Dolan, J. R. & Marrasé, C. Planktonic ciliate distribution relative to a deep chlorophyll maximum: Catalan Sea, NW Mediterranean, June 1993. Deep-Sea Res. I(42), 1965–1987 (1995).

    Article 

    Google Scholar 

  • Suzuki, T. & Taniguchi, A. Standing crops and vertical distribution of four groups of marine planktonic ciliates in relation to phytoplankton chlorophyll a. Mar. Biol. 132, 375–382 (1998).

    Article 

    Google Scholar 

  • Utermöhl, H. Zur vervollkommnung der quantitativen phytoplankton Methodik. Mit. Int. Ver. Theor. Angew. Limnol. 9, 1–38 (1958).

    Google Scholar 

  • Lund, J. W. G., Kipling, C. & Cren, E. D. L. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11, 143–170 (1958).

    Article 

    Google Scholar 

  • Kofoid, C. A. & Campbell, A. S. A Conspectus of the Marine and Fresh-Water Ciliata Belonging to the Suborder Tintinnoinea: With Descriptions of New Species Principally from the Agassiz Expedition to the Eastern Tropical Pacific 1904–1905 (University of California Press, 1929).

    Google Scholar 

  • Kofoid, C. A., & Campbell, A. S. Reports on the scientific results of the expedition to the eastern tropical Pacific, in charge to Alexander Agassiz, by US Fish commission steamer “Albatross”, from October 1904 to March 1905, The Ciliata: The Tintinnoinea (Bulletin of the Museum of Comparative Zoology of Harvard College), vol. XXXVII. Cambridge University, Harvard (Lieut.-Commander LM Garrett, USN commanding) (1939).

  • Zhang, W. C., Feng, M. P., Yu, Y., Zhang, C. X. & Xiao, T. An Illustrated Guide to Contemporary Tintinnids in the World 1–499 (Science Press, 2012).

    Google Scholar 

  • Paranjape, M. A. & Gold, K. Cultivation of marine pelagic protozoa. Ann. Inst. Oceanogr. Paris 58, 143–150 (1982).

    Google Scholar 

  • Alder, V. A. Tintinnoinea. In South Atlantic zooplankton (ed. Boltovskoy, D.) 321–384 (Backhuys, 1999).

    Google Scholar 

  • Verity, P. G. & Langdon, C. Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay. J. Plankton R. 6, 859–868 (1984).

    Article 
    CAS 

    Google Scholar 

  • Putt, M. & Stoecker, D. K. An experimentally determined carbon: Volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters. Limnol. Oceanogr. 34, 1097–1103 (1989).

    Article 
    ADS 

    Google Scholar 

  • Yu, Y. et al. Basin-scale variation in planktonic ciliate distribution: A detailed temporal and spatial study of the Yellow Sea. Mar. Biol. Res. 10, 641–654 (2014).

    Article 

    Google Scholar 

  • Wang, C. F. et al. Hydrographic feature variation caused pronounced differences of planktonic ciliate community in the Pacific Arctic Region in summer 2016 and 2019. Front. Microbiol. 13, 881048 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Margalef, R. Information theory in ecology. Gen. Syst. 3, 36–71 (1958).

    Google Scholar 

  • Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Dolan, J. R. & Pierce, R. W. Diversity and distributions of tintinnid ciliates. In The Biology and Ecology of Tintinnid Ciliates: Models for Marine Plankton (eds Dolan, J. R. et al.) 214–243 (Wiley-Blackwell, 2013).

    Google Scholar 

  • Xu, Z. L. & Chen, Y. Q. Aggregated intensity of dominant species of zooplankton in autumn in the East China Sea. J. Ecol. 8, 13–15 (1989).

    Google Scholar 

  • Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods (PRIMER-E, 2008).

    Google Scholar 

  • Jiang, Y., Xu, G. & Xu, H. Use of multivariate dispersion to assess water quality based on species composition data. Environ. Sci. Pollut. Res. 23, 3267–3272 (2016).

    Article 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Nanotube sensors are capable of detecting and distinguishing gibberellin plant hormones

    Study: Smoke particles from wildfires can erode the ozone layer