Ritz, K. & Young, I. M. Interactions between soil structure and fungi. Mycologist 18, 52–59 (2004).
Google Scholar
Schimel, J. P. & Schaeffer, S. M. Microbial control over carbon cycling in soil. Front. Microbiol. 3, 348 (2012).
Google Scholar
Six, J., Bossuyt, H., Degryze, S. & Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 79, 7–31 (2004).
Google Scholar
van der Heijden, M. G. A. & Wagg, C. Soil microbial diversity and agro-ecosystem functioning. Plant Soil 363, 1–5 (2013).
Google Scholar
Winter, S. et al. Effects of vegetation management intensity on biodiversity and ecosystem services in vineyards: a meta-analysis. J. Appl. Ecol. 55, 2484–2495 (2018).
Google Scholar
Belmonte, S. A. et al. Effect of long-term soil management on the mutual interaction among soil organic matter, microbial activity and aggregate stability in a vineyard. Pedosphere 28, 288–298 (2018).
Google Scholar
Bronick, C. J. & Lal, R. Soil structure and management: a review. Geoderma 124, 3–22 (2005).
Google Scholar
Kratschmer, S. et al. Enhancing flowering plant functional richness improves wild bee diversity in vineyard inter-rows in different floral kingdoms. Ecol. Evol. 11, 7927–7945 (2021).
Google Scholar
Constancias, F. et al. Microscale evidence for a high decrease of soil bacterial density and diversity by cropping. Agron. Sustain. Dev. 34, 831–840 (2014).
Google Scholar
Schmidt, R., Gravuer, K., Bossange, A. V., Mitchell, J. & Scow, K. Long-term use of cover crops and no-till shift soil microbial community life strategies in agricultural soil. PLoS One 13, e0192953 (2018).
Google Scholar
Vink, S. N., Chrysargyris, A., Tzortzakis, N. & Salles, J. F. Bacterial community dynamics varies with soil management and irrigation practices in grapevines (Vitis vinifera L.). Appl. Soil Ecol. 158, 103807 (2021).
Google Scholar
Pingel, M., Reineke, A. & Leyer, I. A 30-years vineyard trial: plant communities, soil microbial communities and litter decomposition respond more to soil treatment than to N fertilization. Agr. Ecosyst. Environ. 272, 114–125 (2019).
Google Scholar
Sharma-Poudyal, D., Schlatter, D., Yin, C., Hulbert, S. & Paulitz, T. Long-term no-till: a major driver of fungal communities in dryland wheat cropping systems. PLoS One 12, e0184611 (2017).
Google Scholar
Hungria, M., Franchini, J. C., Brandão-Junior, O., Kaschuk, G. & Souza, R. A. Soil microbial activity and crop sustainability in a long-term experiment with three soil-tillage and two crop-rotation systems. Appl. Soil. Ecol. 42, 288–296 (2009).
Google Scholar
Pascault, N. et al. In situ dynamics of microbial communities during decomposition of wheat, rape, and alfalfa residues. Microb. Ecol. 60, 816–828 (2010).
Google Scholar
Tresch, S. et al. Litter decomposition driven by soil fauna, plant diversity and soil management in urban gardens. Sci. Total Environ. 658, 1614–1629 (2019).
Google Scholar
Faust, S., Koch, H.-J., Dyckmans, J. & Joergensen, R. G. Response of maize leaf decomposition in litterbags and soil bags to different tillage intensities in a long-term field trial. Appl. Soil. Ecol. 141, 38–44 (2019).
Google Scholar
Liu, Y.-R. et al. New insights into the role of microbial community composition in driving soil respiration rates. Soil Biol. Biochem. 118, 35–41 (2018).
Google Scholar
Yang, C., Liu, N. & Zhang, Y. Soil aggregates regulate the impact of soil bacterial and fungal communities on soil respiration. Geoderma 337, 444–452 (2019).
Google Scholar
Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).
Google Scholar
Bruggisser, O. T., Schmidt-Entling, M. H. & Bacher, S. Effects of vineyard management on biodiversity at three trophic levels. Biol. Cons. 143, 1521–1528 (2010).
Google Scholar
Lienhard, P. et al. Pyrosequencing evidences the impact of cropping on soil bacterial and fungal diversity in Laos tropical grassland. Agron. Sustain. Dev. 34, 525–533 (2014).
Google Scholar
Schnoor, T. K., Lekberg, Y., Rosendahl, S. & Olsson, P. A. Mechanical soil disturbance as a determinant of arbuscular mycorrhizal fungal communities in semi-natural grassland. Mycorrhiza 21, 211–220 (2011).
Google Scholar
Kazakou, E. et al. A plant trait-based response-and-effect framework to assess vineyard inter-row soil management. Bot. Lett. 163, 373–388 (2016).
Google Scholar
Svensson, J. R., Lindegarth, M., Jonsson, P. R. & Pavia, H. Disturbance-diversity models: What do they really predict and how are they tested?. Proc. Biol. Sci. 279, 2163–2170 (2012).
Google Scholar
Bao, T. et al. Moderate disturbance increases the PLFA diversity and biomass of the microbial community in biocrusts in the Loess Plateau region of China. Plant Soil 451, 499–513 (2020).
Google Scholar
Liu, J. et al. Soil carbon content drives the biogeographical distribution of fungal communities in the black soil zone of northeast China. Soil Biol. Biochem. 83, 29–39 (2015).
Google Scholar
Cotton, J. & Acosta-Martínez, V. Intensive tillage converting grassland to cropland immediately reduces soil microbial community size and organic carbon. Agric. Environ. Lett. 3, 180047 (2018).
Google Scholar
Poeplau, C. et al. Temporal dynamics of soil organic carbon after land-use change in the temperate zone – carbon response functions as a model approach. Glob. Change Biol. 17, 2415–2427 (2011).
Google Scholar
Burns, K. N. et al. Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes: differentiation by vineyard management. Soil Biol. Biochem. 103, 337–348 (2016).
Google Scholar
Steiner, M. et al. Local conditions matter: minimal and variable effects of soil disturbance on microbial communities and functions in European vineyards. PLoS One 18, e0280516 (2023).
Google Scholar
Zeng, J. et al. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biol. Biochem. 92, 41–49 (2016).
Google Scholar
Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. U.S.A. 103, 626–631 (2006).
Google Scholar
Eisenhauer, N. Plant diversity effects on soil microorganisms: spatial and temporal heterogeneity of plant inputs increase soil biodiversity. Pedobiologia 59, 175–177 (2016).
Google Scholar
Porazinska, D. L. et al. Plant diversity and density predict belowground diversity and function in an early successional alpine ecosystem. Ecology 99, 1942–1952 (2018).
Google Scholar
Prober, S. M. et al. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecol. Lett. 18, 85–95 (2015).
Google Scholar
Sun, Y.-Q., Wang, J., Shen, C., He, J.-Z. & Ge, Y. Plant evenness modulates the effect of plant richness on soil bacterial diversity. Sci. Total Environ. 662, 8–14 (2019).
Google Scholar
Kuzyakov, Y. Priming effects: interactions between living and dead organic matter. Soil Biol. Biochem. 42, 1363–1371 (2010).
Google Scholar
Huo, C., Luo, Y. & Cheng, W. Rhizosphere priming effect: a meta-analysis. Soil Biol. Biochem. 111, 78–84 (2017).
Google Scholar
Dimassi, B. et al. Effect of nutrients availability and long-term tillage on priming effect and soil C mineralization. Soil Biol. Biochem. 78, 332–339 (2014).
Google Scholar
Prescott, C. E. Litter decomposition: What controls it and how can we alter it to sequester more carbon in forest soils?. Biogeochemistry 101, 133–149 (2010).
Google Scholar
Petraglia, A. et al. Litter decomposition: effects of temperature driven by soil moisture and vegetation type. Plant Soil 435, 187–200 (2019).
Google Scholar
Vukicevich, E., Lowery, T., Bowen, P., Úrbez-Torres, J. R. & Hart, M. Cover crops to increase soil microbial diversity and mitigate decline in perennial agriculture. A review. Agron. Sustain. Dev. (2016).
Bani, A. et al. The role of microbial community in the decomposition of leaf litter and deadwood. Appl. Soil. Ecol. 126, 75–84 (2018).
Google Scholar
Bonanomi, G., Capodilupo, M., Incerti, G., Mazzoleni, S. & Scala, F. Litter quality and temperature modulate microbial diversity effects on decomposition in model experiments. Community Ecol. 16, 167–177 (2015).
Google Scholar
Daebeler, A. et al. Pairing litter decomposition with microbial community structures using the Tea Bag Index (TBI). SOIL Discuss. [preprint]; 10.5194/soil-2021-110 (2021).
Keuskamp, J. A., Dingemans, B. J. J., Lehtinen, T., Sarneel, J. M. & Hefting, M. M. Tea Bag Index: a novel approach to collect uniform decomposition data across ecosystems. Methods Ecol. Evol. 4, 1070–1075 (2013).
Google Scholar
Schaller, K. Praktikum zur Bodenkunde und Pflanzenernährung. Hochschule Geisenheim, (2000).
Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).
Google Scholar
Ihrmark, K. et al. New primers to amplify the fungal ITS2 region–evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol. Ecol. 82, 666–677 (2012).
Google Scholar
Schoch, C. L. et al. SI: Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. U.S.A. 109, 6241–6246 (2012).
Google Scholar
Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Available at https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).
Joshi, N. A. & Fass, J. N. sickle – A Windowed Adaptive Trimming Tool for FASTQ Files Using Quality. Available at https://github.com/najoshi/sickle (2011).
Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).
Google Scholar
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).
Google Scholar
Westcott, S. L. & Schloss, P. D. OptiClust, an improved method for assigning amplicon-based sequence data to operational taxonomic units. mSphere 2, e00073 (2017).
Google Scholar
Cole, J. R. et al. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633–D642 (2014).
Google Scholar
Gweon, H. S. et al. PIPITS: an automated pipeline for analyses of fungal internal transcribed spacer sequences from the Illumina sequencing platform. Methods Ecol. Evol. 6, 973–980 (2015).
Google Scholar
Kõljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277 (2013).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. Available at https://www.R-project.org/ (2019).
McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).
Google Scholar
Haegeman, B. et al. Robust estimation of microbial diversity in theory and in practice. ISME J. 7, 1092–1101 (2013).
Google Scholar
Scheu, S. Automated measurement of the respiratory response of soil microcompartments: Active microbial biomass in earthworm faeces. Soil Biol. Biochem. 24, 1113–1118 (1992).
Google Scholar
Mori, T. Validation of the Tea Bag Index as a standard approach for assessing organic matter decomposition: a laboratory incubation experiment. Ecol. Ind. 141, 109077 (2022).
Google Scholar
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–142. Available at https://CRAN.R-project.org/package=nlme (2019).
Lenth, R. Emmeans: Estimated Marginal Means, Aka Least-Squares Means. R package version 1.4.4. Available at https://CRAN.R-project.org/package=emmeans (2020).
Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).
Google Scholar
Grace, J. B., Anderson, T. M., Olff, H. & Scheiner, S. M. On the specification of structural equation models for ecological systems. Ecol. Monogr. 80, 67–87 (2010).
Google Scholar
Shipley, B. A new inferential test for path models based on directed acyclic graphs. Struct. Equ. Model. 7, 206–218 (2000).
Google Scholar
Source: Ecology - nature.com