in

Drosophilids with darker cuticle have higher body temperature under light

  • Massey, J. H. & Wittkopp, P. J. The genetic basis of pigmentation differences within and between Drosophila species. Curr. Top. Dev. Biol. 119, 27–61 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yassin, A. et al. The pdm3 locus is a hotspot for recurrent evolution of female-limited color dimorphism in Drosophila. Curr. Biol. 26, 2412–2422 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Williams, T. M. et al. The regulation and evolution of a genetic switch controlling sexually dimorphic traits in Drosophila. Cell 134, 610–623 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bastide, H. et al. A genome-wide, fine-scale map of natural pigmentation variation in Drosophila melanogaster. PLoS Genet. 9, e1003534 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pool, J. E. & Aquadro, C. F. The genetic basis of adaptive pigmentation variation in Drosophila melanogaster. Mol. Ecol. 16, 2844–2851 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wittkopp, P. J. et al. Intraspecific polymorphism to interspecific divergence: genetics of pigmentation in Drosophila. Science 326, 540–544 (2009).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jeong, S. et al. The evolution of gene regulation underlies a morphological difference between two Drosophila sister species. Cell 132, 783–793 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rajpurohit, S. et al. Pigmentation and fitness trade-offs through the lens of artificial selection. Biol. Lett. 12, (2016).

  • Massey, J. H. et al. Pleiotropic effects of ebony and tan on pigmentation and cuticular hydrocarbon composition in Drosophila melanogaster. Front. Physiol. 10, 518 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parkash, R., Rajpurohit, S. & Ramniwas, S. Impact of darker, intermediate and lighter phenotypes of body melanization on desiccation resistance in Drosophila melanogaster. J. Insect Sci. 9, 1–10 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Dombeck, I. & Jaenike, J. Ecological genetics of abdominal pigmentation in Drosophila falleni: A pleiotropic link to nematode parasitism. Evolution 58, 587–596 (2004).

    PubMed 

    Google Scholar 

  • Kutch, I. C., Sevgili, H., Wittman, T. & Fedorka, K. M. Thermoregulatory strategy may shape immune investment in Drosophila melanogaster. J. Exp. Biol. 217, 3664–3669 (2014).

    PubMed 

    Google Scholar 

  • Wittkopp, P. J. & Beldade, P. Development and evolution of insect pigmentation: Genetic mechanisms and the potential consequences of pleiotropy. Semin. Cell Dev. Biol. 20, 65–71 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bastide, H., Yassin, A., Johanning, E. J. & Pool, J. E. Pigmentation in Drosophila melanogaster reaches its maximum in Ethiopia and correlates most strongly with ultra-violet radiation in sub-Saharan Africa. BMC Evol. Biol. 14, 179 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arnold, S. J. Morphology, performance and fitness. Am. Zool. 23, 347–361 (1983).

    Article 

    Google Scholar 

  • Gibert, P., Moreteau, B. & David, J. R. Developmental constraints on an adaptive plasticity: Reaction norms of pigmentation in adult segments of Drosophila melanogaster. Evol. Dev. 2, 249–260 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Parkash, R., Rajpurohit, S. & Ramniwas, S. Changes in body melanisation and desiccation resistance in highland vs. lowland populations of D. melanogaster. J. Insect Physiol. 54, 1050–1056 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Telonis-Scott, M., Hoffmann, A. A. & Sgro, C. M. The molecular genetics of clinal variation: A case study of ebony and thoracic trident pigmentation in Drosophila melanogaster from eastern Australia. Mol. Ecol. 20, 2100–2110 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Munjal, A. K. et al. Thoracic trident pigmentation in Drosophila melanogaster: latitudinal and altitudinal clines in Indian populations. Genet. Sel. Evol. 29, 601–610 (1997).

    Article 
    PubMed Central 

    Google Scholar 

  • David, J. R., Capy, P., Payant, V. & Tsakas, S. Thoracic trident pigmentation in Drosophila melanogaster: Differentiation of geographical populations. Genet. Sel. Evol. 17, 211–224 (1985).

    Article 
    CAS 

    Google Scholar 

  • Clusella Trullas, S., van Wyk, J. H. & Spotila, J. R. Thermal melanism in ectotherms. J. Therm. Biol. 32, 235–245 (2007).

  • Cordero, R. J. B. et al. Impact of yeast pigmentation on heat capture and latitudinal distribution. Curr. Biol. 28, 2657-2664.e3 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sibilia, C. D. et al. Thermal Physiology and Developmental Plasticity of Pigmentation in the Harlequin Bug (Hemiptera: Pentatomidae). J. Insect Sci. 18, (2018).

  • Jong, P., Gussekloo, S. & Brakefield, P. Differences in thermal balance, body temperature and activity between non-melanic and melanic two-spot ladybird beetles (Adalia bipunctata) under controlled conditions. J. Exp. Biol. 199, 2655–2666 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zverev, V., Kozlov, M. V., Forsman, A. & Zvereva, E. L. Ambient temperatures differently influence colour morphs of the leaf beetle Chrysomela lapponica: Roles of thermal melanism and developmental plasticity. J. Therm. Biol 74, 100–109 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Watt, W. B. Adaptive significance of pigment polymorphisms in Colias butterflies, II. Thermoregulation and photoperiodically controlled melanin variation in Colias eurytheme. Proc. Natl. Acad. Sci. USA 63, 767–74 (1969).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kuyucu, A. C., Sahin, M. K. & Caglar, S. S. The relation between melanism and thermal biology in a colour polymorphic bush cricket, Isophya rizeensis. J. Therm. Biol. 71, 212–220 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Köhler, G. & Schielzeth, H. Green-brown polymorphism in alpine grasshoppers affects body temperature. Ecol. Evol. 10, 441–450 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Willmer, P. G. & Unwin, D. M. Field analyses of insect heat budgets: Reflectance, size and heating rates. Oecologia 50, 250–255 (1981).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Pecsenye, K., Bokor, K., Lefkovitch, L. P., Giles, B. E. & Saura, A. Enzymatic responses of Drosophila melanogaster to long- and short-term exposures to ethanol. Mol. Gen. Genet. 255, 258–268 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • De Castro, S., Peronnet, F., Gilles, J.-F., Mouchel-Vielh, E. & Gibert, J.-M. bric à brac (bab), a central player in the gene regulatory network that mediates thermal plasticity of pigmentation in Drosophila melanogaster. PLoS Genet. 14, e1007573 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cooley, A. M., Shefner, L., McLaughlin, W. N., Stewart, E. E. & Wittkopp, P. J. The ontogeny of color: Developmental origins of divergent pigmentation in Drosophila americana and D. novamexicana. Evol. Dev. 14, 317–25 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • John, A. V., Sramkoski, L. L., Walker, E. A., Cooley, A. M. & Wittkopp, P. J. Sensitivity of allelic divergence to genomic position: Lessons from the Drosophila tan Gene. G3 (Bethesda) (2016) doi:https://doi.org/10.1534/g3.116.032029.

  • Liu, Y. et al. Changes throughout a genetic network mask the contribution of hox gene evolution. Curr. Biol. 29, 2157-2166.e6 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • David, J. R. et al. Evolution of assortative mating following selective introgression of pigmentation genes between two Drosophila species. Ecol. Evol. 12, e8821 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wittkopp, P. J., True, J. R. & Carroll, S. B. Reciprocal functions of the Drosophila yellow and ebony proteins in the development and evolution of pigment patterns. Development 129, 1849–1858 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Davis, J. S. & Moyle, L. C. Desiccation resistance and pigmentation variation reflects bioclimatic differences in the Drosophila americana species complex. BMC Evol. Biol. 19, 204 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nagy, O. et al. Correlated evolution of two copulatory organs via a single cis-regulatory nucleotide change. Curr. Biol. 28, 3450-3457.e13 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lachaise, D. et al. Evolutionary novelties in islands: Drosophila santomea, a new melanogaster sister species from São Tomé. Proc. Biol. Sci. 267, 1487–1495 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haldane, J. B. S. Sex ratio and unisexual sterility in hybrid animals. J. Gen. 12, 101–109 (1922).

    Article 

    Google Scholar 

  • Turissini, D. A. & Matute, D. R. Fine scale mapping of genomic introgressions within the Drosophila yakuba clade. PLoS Genet. 13, e1006971 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoffmann, A. A. Physiological climatic limits in Drosophila: Patterns and implications. J. Exp. Biol. 213, 870–880 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sunaga, S., Akiyama, N., Miyagi, R. & Takahashi, A. Factors underlying natural variation in body pigmentation of Drosophila melanogaster. Genes Genet. Syst. 91, 127–137 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rajpurohit, S. & Schmidt, P. S. Latitudinal pigmentation variation contradicts ultraviolet radiation exposure: A case study in Tropical Indian Drosophila melanogaster. Front. Physiol. 10, 84 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bergland, A. O., Behrman, E. L., O’Brien, K. R., Schmidt, P. S. & Petrov, D. A. Genomic evidence of rapid and stable adaptive oscillations over seasonal time scales in Drosophila. PLoS Genet. 10, e1004775 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rudman, S. M. et al. Direct observation of adaptive tracking on ecological time scales in Drosophila. Science 375, eabj7484 (2022).

  • Fabian, D. K. et al. Genome-wide patterns of latitudinal differentiation among populations of Drosophila melanogaster from North America. Mol. Ecol. 21, 4748–4769 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zeuss, D., Brandl, R., Brändle, M., Rahbek, C. & Brunzel, S. Global warming favours light-coloured insects in Europe. Nat. Commun. 5, 3874 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Brakefield, P. M. & de Jong, P. W. A steep cline in ladybird melanism has decayed over 25 years: A genetic response to climate change?. Heredity (Edinb) 107, 574–578 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zvereva, E. L., Hunter, M. D., Zverev, V., Kruglova, O. Y. & Kozlov, M. V. Climate warming leads to decline in frequencies of melanic individuals in subarctic leaf beetle populations. Sci. Total Environ. 673, 237–244 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Balanyá, J., Oller, J. M., Huey, R. B., Gilchrist, G. W. & Serra, L. Global genetic change tracks global climate warming in Drosophila subobscura. Science 313, 1773–1775 (2006).

    Article 
    ADS 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Coastal algal blooms have intensified over the past 20 years

    Integrating humans with AI in structural design