Nadell, C. D., Drescher, K. & Foster, K. R. Spatial structure, cooperation and competition in biofilms. Nat. Rev. Microbiol. 14, 589–600 (2016).
Google Scholar
Palmer, J. D. & Foster, K. R. Bacterial species rarely work together. Science 376, 581–582 (2022).
Google Scholar
Pande, S. & Kost, C. Bacterial unculturability and the formation of intercellular metabolic networks. Trends Microbiol. 25, 349–361 (2017).
Google Scholar
Nadell, C. D., Xavier, J. B. & Foster, K. R. The sociobiology of biofilms. FEMS Microbiol. Rev. 33, 206–224 (2009).
Google Scholar
Fritts, R. K., McCully, A. L. & McKinlay, J. B. Extracellular metabolism sets the table for microbial cross-feeding. Microbiol. Mol. Biol. Rev. 85, 135 (2021).
Google Scholar
D’Souza, G. et al. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat. Prod. Rep. 35, 455–488 (2018).
Google Scholar
Libby, E., Hébert-Dufresne, L., Hosseini, S.-R. & Wagner, A. Syntrophy emerges spontaneously in complex metabolic systems. PLoS Comput. Biol. 15, e1007169 (2019).
Google Scholar
Staley, J. T. & Konopka, A. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Microbiol. 39, 321–346 (1985).
Google Scholar
Zachar, I. Closing the energetics gap. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01839-3 (2022).
Google Scholar
Zachar, I. & Boza, G. Endosymbiosis before eukaryotes: mitochondrial establishment in protoeukaryotes. Cell. Mol. Life Sci. 77, 3503–3523. https://doi.org/10.1007/s00018-020-03462-6 (2020).
Google Scholar
Zachar, I. & Szathmáry, E. Breath-giving cooperation: critical review of origin of mitochondria hypotheses. Biol. Direct 12, 19. https://doi.org/10.1186/s13062-017-0190-5 (2017).
Google Scholar
Booth, A. & Doolittle, W. F. Eukaryogenesis, how special really?. Proc. Natl. Acad. Sci. 112, 10278–10285 (2015).
Google Scholar
Morris, B. E. L., Henneberger, R., Huber, H. & Moissl-Eichinger, C. Microbial syntrophy: Interaction for the common good. FEMS Microbiol. Rev. 37, 384–406 (2013).
Google Scholar
Szathmáry, E. On the propagation of a conceptual error concerning hypercycles and cooperation. J. Syst. Chem. 4, 2208 (2013).
Google Scholar
Seth, E. C. & Taga, M. E. Nutrient cross-feeding in the microbial world. Front. Microbiol. 5, 350 (2014).
Google Scholar
Piccardi, P., Vessman, B. & Mitri, S. Toxicity drives facilitation between 4 bacterial species. Proc. Natl. Acad. Sci. 116, 15979–15984 (2019).
Google Scholar
Yurtsev, E. A., Conwill, A. & Gore, J. Oscillatory dynamics in a bacterial cross-protection mutualism. Proc. Natl. Acad. Sci. 113, 6236–6241 (2016).
Google Scholar
Kehe, J. et al. Positive interactions are common among culturable bacteria. Sci. Adv. 7, 45 (2021).
Google Scholar
Momeni, B., Xie, L. & Shou, W. Lotka-Volterra pairwise modeling fails to capture diverse pairwise microbial interactions. Elife 6, 25051 (2017).
Google Scholar
Zengler, K. & Zaramela, L. S. The social network of microorganisms: How auxotrophies shape complex communities. Nat. Rev. Microbiol. 16, 383–390 (2018).
Google Scholar
Koschwanez, J. H., Foster, K. R. & Murray, A. W. Sucrose utilization in budding yeast as a model for the origin of undifferentiated multicellularity. PLoS Biol. 9, e1001122 (2011).
Google Scholar
Ciofu, O., Beveridge, T. J., Kadurugamuwa, J., Walther-Rasmussen, J. & Høiby, N. Chromosomal beta-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa. J. Antimicrob. Chemother. 45, 9–13 (2000).
Google Scholar
Xenophontos, C., Harpole, W. S., Küsel, K. & Clark, A. T. Cheating promotes coexistence in a two-species one-substrate culture model. Front. Ecol. Evol. 9, 78006 (2022).
Google Scholar
West, S. A., Diggle, S. P., Buckling, A., Gardner, A. & Griffin, A. S. The social lives of microbes. Annu. Rev. Ecol. Evol. Syst. 38, 53–77 (2007).
Google Scholar
Flemming, H.-C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).
Google Scholar
Kümmerli, R. & Brown, S. P. Molecular and regulatory properties of a public good shape the evolution of cooperation. Proc. Natl. Acad. Sci. 107, 18921–18926 (2010).
Google Scholar
Griffin, A. S., West, S. A. & Buckling, A. Cooperation and competition in pathogenic bacteria. Nature 430, 1024–1027 (2004).
Google Scholar
Kramer, J., Özkaya, Ö. & Kümmerli, R. Bacterial siderophores in community and host interactions. Nat. Rev. Microbiol. 18, 152–163 (2019).
Google Scholar
van der Meij, A., Worsley, S. F., Hutchings, M. I. & van Wezel, G. P. Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol. Rev. 41, 392–416 (2017).
Google Scholar
Kümmerli, R., Schiessl, K. T., Waldvogel, T., McNeill, K. & Ackermann, M. Habitat structure and the evolution of diffusible siderophores in bacteria. Ecol. Lett. 17, 1536–1544 (2014).
Google Scholar
Jautzus, T., van Gestel, J. & Kovács, Á. T. Complex extracellular biology drives surface competition in lessigreaterBacillus subtilisless/igreater. Ecol. Lett. 16, 2320–2328. https://doi.org/10.1101/2022.02.28.482363 (2022).
Google Scholar
Sachs, J. L., Mueller, U. G., Wilcox, T. P. & Bull, J. J. The evolution of cooperation. Q. Rev. Biol. 79, 135–160 (2004).
Google Scholar
Hillesland, K. L. & Stahl, D. A. Rapid evolution of stability and productivity at the origin of a microbial mutualism. Proc. Natl. Acad. Sci. 107, 2124–2129 (2010).
Google Scholar
Bruno, J. F., Stachowicz, J. J. & Bertness, M. D. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18, 119–125 (2003).
Google Scholar
Gore, J., Youk, H. & van Oudenaarden, A. Snowdrift game dynamics and facultative cheating in yeast. Nature 459, 253–256 (2009).
Google Scholar
Sorg, R. A. et al. Collective resistance in microbial communities by intracellular antibiotic deactivation. PLoS Biol. 14, e2000631 (2016).
Google Scholar
Karray, F. et al. Extracellular hydrolytic enzymes produced by halophilic bacteria and archaea isolated from hypersaline lake. Mol. Biol. Rep. 45, 1297–1309 (2018).
Google Scholar
Datta, M. S., Sliwerska, E., Gore, J., Polz, M. F. & Cordero, O. X. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat. Commun. 7, 11965 (2016).
Google Scholar
Tarnita, C. E. The ecology and evolution of social behavior in microbes. J. Exp. Biol. 220, 18–24 (2017).
Google Scholar
Özkaya, Ö., Xavier, K. B., Dionisio, F. & Balbontn, R. Maintenance of microbial cooperation mediated by public goods in single- and multiple-trait scenarios. J. Bacteriol. 199, 22 (2017).
Google Scholar
Yang, D.-D. et al. Fitness and productivity increase with ecotypic diversity among Escherichia coli strains that coevolved in a simple, constant environment. Appl. Environ. Microbiol. 86, 8 (2020).
Google Scholar
Pande, S. et al. Fitness and stability of obligate cross-feeding interactions that emerge upon gene loss in bacteria. ISME J. 8, 953–962 (2013).
Google Scholar
Zhou, K., Qiao, K., Edgar, S. & Stephanopoulos, G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol. 33, 377–383 (2015).
Google Scholar
Harcombe, W. R., Chacón, J. M., Adamowicz, E. M., Chubiz, L. M. & Marx, C. J. Evolution of bidirectional costly mutualism from byproduct consumption. Proc. Natl. Acad. Sci. 115, 12000–12004 (2018).
Google Scholar
Summers, Z. M. et al. Direct exchange of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. Science 330, 1413–1415 (2010).
Google Scholar
Maddamsetti, R., Lenski, R. E. & Barrick, J. E. Adaptation, clonal interference, and frequency-dependent interactions in a long-term evolution experiment with Escherichia coli. Genetics 200, 619–631 (2015).
Google Scholar
Gerrish, P. J. & Lenski, R. E. The fate of competing beneficial mutations in an asexual population. Genetica 102, 127–144 (1998).
Google Scholar
Popat, R. et al. Quorum-sensing and cheating in bacterial biofilms. Proc. R. Soc. B 279, 4765–4771 (2012).
Google Scholar
Rainey, P. B. & Rainey, K. Evolution of cooperation and conflict in experimental bacterial populations. Nature 425, 72–74 (2003).
Google Scholar
Hardin, G. Tragedy of the commons. Science 162, 1243 (1968).
Google Scholar
West, S. A., Cooper, G. A., Ghoul, M. B. & Ten Griffin, A. S. recent insights for our understanding of cooperation. Nat. Ecol. Evol. 5, 419–430 (2021).
Google Scholar
MacArthur, R. Species packing and competitive equilibrium for many species. Theor. Popul. Biol. 1, 1–11 (1970).
Google Scholar
Oliveira, N. M., Niehus, R. & Foster, K. R. Evolutionary limits to cooperation in microbial communities. Proc. Natl. Acad. Sci. 111, 17941–17946 (2014).
Google Scholar
Tilman, D. Resource Competition and Community Structure. Monographs in Population Biology, Vol. 17 (Princeton University Press, 1982).
Ferenci, T. Trade-off mechanisms shaping the diversity of bacteria. Trends Microbiol. 24, 209–223 (2016).
Google Scholar
Rozen, D. E., Philippe, N., de Visser, J. A., Lenski, R. E. & Schneider, D. Death and cannibalism in a seasonal environment facilitate bacterial coexistence. Ecol. Lett. 12, 34–44 (2009).
Google Scholar
Brännström, Å., Johansson, J. & von Festenberg, N. The Hitchhiker’s Guide to Adaptive Dynamics. Games 4, 304–328 (2013).
Google Scholar
Ramin, K. I. & Allison, S. D. Bacterial tradeoffs in growth rate and extracellular enzymes. Front. Microbiol. 10, 2956 (2019).
Google Scholar
Imachi, H. et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 577, 519–525 (2020).
Google Scholar
Wintermute, E. H. & Silver, P. A. Emergent cooperation in microbial metabolism. Mol. Syst. Biol. 6, 407 (2010).
Google Scholar
Libby, E., Kempes, C. & Okie, J. Metabolic compatibility and the rarity of prokaryote endosymbioses. BioRxiv https://doi.org/10.1101/2022.04.14.488272 (2022).
Google Scholar
Pauli, B., Oña, L., Hermann, M. & Kost, C. Obligate mutualistic cooperation limits evolvability. Nat. Commun. 13, 27630 (2022).
Google Scholar
Oña, L. & Kost, C. Cooperation increases robustness to ecological disturbance in microbial cross-feeding networks. Ecol. Lett. 25, 1410–1420 (2022).
Google Scholar
Machado, D. et al. Polarization of microbial communities between competitive and cooperative metabolism. Nat. Ecol. Evol. 5, 195–203 (2021).
Google Scholar
Mee, M. T., Collins, J. J., Church, G. M. & Wang, H. H. Syntrophic exchange in synthetic microbial communities. Proc. Natl. Acad. Sci. 111, E2149–E2156 (2014).
Google Scholar
Goldford, J. E. et al. Emergent simplicity in microbial community assembly. Science 361, 469–474 (2018).
Google Scholar
McCutcheon, J. P. The genomics and cell biology of host-beneficial intracellular infections. Annu. Rev. Cell Dev. Biol. 37, 115–142 (2021).
Google Scholar
Sousa, F. L., Neukirchen, S., Allen, J. F., Lane, N. & Martin, W. F. Lokiarchaeon is hydrogen dependent. Nat. Microbiol. 1, 5 (2016).
Google Scholar
Spang, A. et al. Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat. Microbiol. 4, 1138–1148 (2019).
Google Scholar
Martin, W. & Müller, M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41 (1998).
Google Scholar
López-García, P. & Moreira, D. The Syntrophy hypothesis for the origin of eukaryotes revisited. Nat. Microbiol. 5, 655–667 (2020).
Google Scholar
Mills, D. B. et al. Eukaryogenesis and oxygen in Earth history. Nat. Ecol. Evol. 6, 520–532 (2022).
Google Scholar
Liu, Y. et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 593, 553–557 (2021).
Google Scholar
Zachar, I., Szilágyi, A., Számadó, S. & Szathmáry, E. Farming the mitochondrial ancestor as a model of endosymbiotic establishment by natural selection. Proc. Natl. Acad. Sci. USA. 115, E1504–E1510. https://doi.org/10.1073/pnas.1718707115 (2018).
Google Scholar
Cavalier-Smith, T. & Chao, E.E.-Y. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). Protoplasma https://doi.org/10.1007/s00709-019-01442-7 (2020).
Google Scholar
Searcy, D. G. Nutritional syntrophies and consortia as models for the origin of mitochondria. Symb. Mech. Model Syst. 1, 163–183. https://doi.org/10.1007/0-306-48173-1_10 (2002).
Google Scholar
Müller, N., Timmers, P., Plugge, C. M., Stams, A. J. M. & Schink, B. Syntrophy in methanogenic degradation. Endosymb. Methanog. Archaea 1, 153–192. https://doi.org/10.1007/978-3-319-98836-8_9 (2018).
Google Scholar
Searcy, D. G. Metabolic integration during the evolutionary origin of mitochondria. Cell Res. 13, 229–238 (2003).
Google Scholar
Flemming, H.-C. & Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17, 247–260 (2019).
Google Scholar
Spang, A. et al. Asgard archaea are the closest prokaryotic relatives of eukaryotes. PLoS Genet. 14, e1007080 (2018).
Google Scholar
Burns, J. A., Pittis, A. A. & Kim, E. Gene-based predictive models of trophic modes suggest Asgard archaea are not phagocytotic. Nat. Ecol. Evol. 2, 697–704 (2018).
Google Scholar
Seitz, K. W. et al. Asgard archaea capable of anaerobic hydrocarbon cycling. Nat. Commun. 10, 1 (2019).
Google Scholar
Jimenez, P. & Scheuring, I. Density-dependent private benefit leads to bacterial mutualism. Evolution 75, 1619–1635. https://doi.org/10.1111/evo.14241 (2021).
Google Scholar
Preussger, D., Giri, S., Muhsal, L. K., Oña, L. & Kost, C. Reciprocal fitness feedbacks promote the evolution of mutualistic cooperation. Curr. Biol. 30, 3580-3590.e7 (2020).
Google Scholar
Monaco, H. et al. Spatial-temporal dynamics of a microbial cooperative behavior resistant to cheating. Nat. Commun. 13, 3580 (2022).
Google Scholar
Yanni, D., Márquez-Zacarias, P., Yunker, P. J. & Ratcliff, W. C. Drivers of spatial structure in social microbial communities. Curr. Biol. 29, 545–550 (2019).
Google Scholar
Source: Ecology - nature.com