in

Ecological divergence of syntopic marine bacterial species is shaped by gene content and expression

  • Cohan FM. Bacterial species and speciation. Syst Biol. 2001;50:513–24.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Delmont TO, Kiefl E, Kilinc O, Esen OC, Uysal I, Rappe MS, et al. Single-amino acid variants reveal evolutionary processes that shape the biogeography of a global SAR11 subclade. eLife 2019;8:e46497.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hunt DE, David LA, Gevers D, Preheim SP, Alm EJ, Polz MF. Resource partitioning and sympatric differentiation among closely related bacterioplankton. Science 2008;320:1081–5.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Moore LR, Rocap G, Chisholm SW. Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 1998;393:464–7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rivas LR. A reinterpretation of the concepts “sympatric” and “allopatric” with proposal for the additional terms “syntopic” and “allotopic”. Syst Zool. 1964;13:42–3.

    Article 

    Google Scholar 

  • Friedman J, Alm EJ, Shapiro BJ. Sympatric speciation: when is it possible in bacteria? PLoS One. 2013;8:e53539.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kiene RP, Nowinski B, Esson K, Preston C, Marin R III, Birch J, et al. Unprecedented DMSP concentrations in a massive dinoflagellate bloom in Monterey Bay. Ca Geophys Res Lett. 2019;46:12279–88.

    Article 

    Google Scholar 

  • Scholin CA, Birch J, Jensen S, Marin R, Massion E, Pargett D, et al. The quest to develop ecogenomic sensors a 25-year history of the environmental sample processor (ESP) as a case study. Oceanography. 2017;30:100–13.

    Article 

    Google Scholar 

  • Nowinski B, Smith CB, Thomas CM, Esson K, Marin R, Preston CM, et al. Microbial metagenomes and metatranscriptomes during a coastal phytoplankton bloom. Sci Data. 2019;6:1–7.

    Article 
    CAS 

    Google Scholar 

  • Luo H, Löytynoja A, Moran MA. Genome content of uncultivated marine Roseobacters in the surface ocean. Environ Microbiol. 2012;14:41–51.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Connon SA, Giovannoni SJ. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol. 2002;68:3878–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Feng X, Chu X, Qian Y, Henson MW, Lanclos VC, Qin F, et al. Mechanisms driving genome reduction of a novel Roseobacter lineage. ISME J. 2021;15:3576–86.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moran MA, Belas R, Schell M, González J, Sun F, Sun S, et al. Ecological genomics of marine roseobacters. Appl Environ Microbiol. 2007;73:4559–69.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Newton RJ, Griffin LE, Bowles KM, Meile C, Gifford S, Givens CE, et al. Genome characteristics of a generalist marine bacterial lineage. ISME J. 2010;4:784–98.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Suzuki MT, Preston CM, Béjà O, De La Torre J, Steward G, DeLong EF. Phylogenetic screening of ribosomal RNA gene-containing clones in bacterial artificial chromosome (BAC) libraries from different depths in Monterey Bay. Micro Ecol. 2004;48:473–88.

    Article 
    CAS 

    Google Scholar 

  • Buchan A, González JM, Moran MA. Overview of the marine Roseobacter lineage. Appl Environ Microbiol. 2005;71:5665–77.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Giebel H-A, Kalhoefer D, Lemke A, Thole S, Gahl-Janssen R, Simon M, et al. Distribution of Roseobacter RCA and SAR11 lineages in the North Sea and characteristics of an abundant RCA isolate. ISME J. 2011;5:8–19.

    Article 
    PubMed 

    Google Scholar 

  • Ottesen EA, Marin R, Preston CM, Young CR, Ryan JP, Scholin CA, et al. Metatranscriptomic analysis of autonomously collected and preserved marine bacterioplankton. ISME J. 2011;5:1881–95.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang Y, Sun Y, Jiao N, Stepanauskas R, Luo H. Ecological genomics of the uncultivated marine Roseobacter lineage CHAB-I-5. Appl Environ Microbiol. 2016;82:2100–11.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aylward FO, Eppley JM, Smith JM, Chavez FP, Scholin CA, DeLong EF. Microbial community transcriptional networks are conserved in three domains at ocean basin scales. Proc Nat Acad Sci. 2015;112:5443–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ottesen EA, Young CR, Eppley JM, Ryan JP, Chavez FP, Scholin CA, et al. Pattern and synchrony of gene expression among sympatric marine microbial populations. Proc Nat Acad Sci. 2013;110:E488–E97.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nowinski B, Motard‐Côté J, Landa M, Preston CM, Scholin CA, Birch JM, et al. Microdiversity and temporal dynamics of marine bacterial dimethylsulfoniopropionate genes. Environ Microbiol. 2019;21:1687–701.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mukherjee S, Stamatis D, Bertsch J, Ovchinnikova G, Sundaramurthi JC, Lee J, et al. Genomes OnLine Database (GOLD) v. 8: overview and updates. Nucleic Acids Res. 2021;49:D723–D33.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen I-MA, Chu K, Palaniappan K, Pillay M, Ratner A, Huang J, et al. IMG/M v. 5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 2019;47:D666–D77.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Satinsky BM, Gifford SM, Crump BC, Moran MA. Use of internal standards for quantitative metatranscriptome and metagenome analysis. In: DeLong EF, editor. Methods in Enzymology 531: Elsevier; 2013. p. 237–50.

  • Satinsky BM, Gifford SM, Crump BC, Smith C.Moran MA, Internal genomic DNA standard for quantitative metagenome analysis V3. protocols io 2017; https://doi.org/10.17504/protocols.io.jxdcpi6p.

  • Satinsky BM, Gifford SM, Crump BC, Smith C.Moran MA, Preparation of custom synthesized RNAtranscript standard V3. protocols io. 2017; https://doi.org/10.17504/protocols.io.jxccpiwp.

  • Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 2015;3:e1165.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Prepr. 2016. Report No.: 2167–9843

  • Lee K, Choo Y-J, Giovannoni SJ, Cho J-C. Maritimibacter alkaliphilus gen. nov., sp. nov., a genome-sequenced marine bacterium of the Roseobacter clade in the order Rhodobacterales. Int J Syst Evol Microbiol. 2007;57:1653–8.

    Article 
    PubMed 

    Google Scholar 

  • Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 2015;3:e1319.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000;28:33–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, Von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34:2115–22.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 2020;36:2251–2.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bushnell B. BBMap: a fast, accurate, splice-aware aligner. No. LBNL-7065E. Lawrence Berkeley National Laboratory, Berkeley, CA (United States); 2014.

  • Markowitz VM, Chen I-MA, Palaniappan K, Chu K, Szeto E, Grechkin Y, et al. The integrated microbial genomes system: an expanding comparative analysis resource. Nucleic Acids Res. 2010;38:D382–D90.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sun Y, Luo H. Homologous recombination in core genomes facilitates marine bacterial adaptation. Appl Environ Microbiol. 2018;84:e02545–17.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pfaffel O. ClustImpute: An R package for K-means clustering with build-in missing data imputation. https://www.researchgate.net/publication/341881683.

  • Moran MA, Satinsky B, Gifford SM, Luo H, Rivers A, Chan L-K, et al. Sizing up metatranscriptomics. ISME J 2013;7:237–43.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.

    Article 
    PubMed 

    Google Scholar 

  • Gifford SM, Zhao L, Stemple B, DeLong K, Medeiros PM, Seim H, et al. Microbial niche diversification in the Galápagos Archipelago and its response to El Niño. Front Microbiol. 2020;11:575194.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rich VI, Pham VD, Eppley J, Shi Y, DeLong EF. Time‐series analyses of Monterey Bay coastal microbial picoplankton using a ‘genome proxy’microarray. Environ Microbiol. 2011;13:116–34.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Riedel T, Tomasch J, Buchholz I, Jacobs J, Kollenberg M, Gerdts G, et al. Constitutive expression of the proteorhodopsin gene by a flavobacterium strain representative of the proteorhodopsin-producing microbial community in the North Sea. Appl Environ Microbiol. 2010;76:3187–97.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Iverson V, Morris RM, Frazar CD, Berthiaume CT, Morales RL, Armbrust EV. Untangling genomes from metagenomes: revealing an uncultured class of marine Euryarchaeota. Science 2012;335:587–90.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yooseph S, Nealson KH, Rusch DB, McCrow JP, Dupont CL, Kim M, et al. Genomic and functional adaptation in surface ocean planktonic prokaryotes. Nature 2010;468:60–6.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wagner-Döbler I, Biebl H. Environmental biology of the marine Roseobacter lineage. Annu Rev Microbiol. 2006;60:255–80.

    Article 
    PubMed 

    Google Scholar 

  • West NJ, Obernosterer I, Zemb O, Lebaron P. Major differences of bacterial diversity and activity inside and outside of a natural iron‐fertilized phytoplankton bloom in the Southern Ocean. Environ Microbiol. 2008;10:738–56.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Luo H, Moran MA. Evolutionary ecology of the marine Roseobacter clade. Microbiol Mol Biol Rev. 2014;78:573–87.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Simon M, Scheuner C, Meier-Kolthoff JP, Brinkhoff T, Wagner-Döbler I, Ulbrich M, et al. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. ISME J 2017;11:1483–99.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Comm. 2018;9:1–8.

    Article 

    Google Scholar 

  • Caro‐Quintero A, Konstantinidis KT. Bacterial species may exist, metagenomics reveal. Environ Microbiol. 2012;14:347–55.

    Article 
    PubMed 

    Google Scholar 

  • Tindall BJ, Rosselló-Móra R, Busse H-J, Ludwig W, Kämpfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol. 2010;60:249–66.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cohan FM. What are bacterial species? Ann Rev Microbiol. 2002;56:457–87.

    Article 
    CAS 

    Google Scholar 

  • Mende DR, Sunagawa S, Zeller G, Bork P. Accurate and universal delineation of prokaryotic species. Nat Meth. 2013;10:881–4.

    Article 
    CAS 

    Google Scholar 

  • Olm MR, Crits-Christoph A, Diamond S, Lavy A, Matheus Carnevali PB, Banfield JF. Consistent metagenome-derived metrics verify and delineate bacterial species boundaries. mSystems 2020;5:e00731–19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Konstantinidis KT, Tiedje JM. Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol. 2007;10:504–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Delmont TO, Eren EM. Linking pangenomes and metagenomes: The Prochlorococcus metapangenome. PeerJ 2018;2018:e4320–e.

    Article 

    Google Scholar 

  • Neidhardt F, Umbarger H Chemical composition of Escherichia coli. In: FC N, Curtiss R III, JL I, ECC L, KB L, B M, et al., editors. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. Washington DC: ASM Press; 1996. p. 13-6.

  • Taniguchi Y, Choi PJ, Li G-W, Chen H, Babu M, Hearn J, et al. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science. 2010;329:533–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rodríguez-Gijón A, Nuy JK, Mehrshad M, Buck M, Schulz F, Woyke T, et al. A genomic perspective across Earth’s microbiomes reveals that genome size in Archaea and Bacteria is linked to ecosystem type and trophic strategy. Front Microbiol. 2022;12:761869.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ryu K-S, Kim C, Kim I, Yoo S, Choi B-S, Park C. NMR application probes a novel and ubiquitous family of enzymes that alter monosaccharide configuration. J Biol Chem. 2004;279:25544–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Giachino A, Waldron KJ. Copper tolerance in bacteria requires the activation of multiple accessory pathways. Mol Microbiol. 2020;114:377–90.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang X, Zhang Y, Ren M, Xia T, Chu X, Liu C, et al. Cryptic speciation of a pelagic Roseobacter population varying at a few thousand nucleotide sites. ISME J. 2020;14:3106–19.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Uchimiya M, Schroer W, Olofsson M, Edison AS, Moran MA. Diel investments in metabolite production and consumption in a model microbial system. ISME J. 2022;16:1306–17.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cordero OX, Wildschutte H, Kirkup B, Proehl S, Ngo L, Hussain F, et al. Ecological populations of bacteria act as socially cohesive units of antibiotic production and resistance. Science 2012;337:1228–31.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Morris JJ, Lenski RE, Zinser ER. The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. mBio 2012;3:e00036–12.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Environmental data from CTD during the Fall 2016 ESP deployment in Monterey Bay, CA. Biological and Chemical Oceanography Data Management Office (BCO-DMO). 2019. Available from: https://doi.org/10.1575/1912/bco-dmo.756376.1.

  • Environmental data from Niskin bottle sampling during the Fall 2016 ESP deployment in Monterey Bay. Biological and Chemical Oceanography Data Management Office (BCO-DMO). 2019. Available from: https://doi.org/10.1575/1912/bco-dmo.756413.1.


  • Source: Ecology - nature.com

    Creating the steps to make organizational sustainability work

    No impact of nitrogen fertilization on carbon sequestration in a temperate Pinus densiflora forest