in

Ecological insights into soil health according to the genomic traits and environment-wide associations of bacteria in agricultural soils

  • Doran JW. Soil health and global sustainability: translating science into practice. Agric Ecosyst Environ. 2002;88:119–27.

    Article 

    Google Scholar 

  • Wander MM, Cihacek LJ, Coyne M, Drijber RA, Grossman JM, Gutknecht JLM, et al. Developments in Agricultural Soil Quality and Health: Reflections by the Research Committee on Soil Organic Matter Management. Front Environ Sci. 2019;7:1–9.

    Article 

    Google Scholar 

  • Stewart RD, Jian J, Gyawali AJ, Thomason WE, Badgley BD, Reiter MS, et al. What we talk about when we talk about soil health. Agric Environ Lett. 2018;3:5–9.

    Article 

    Google Scholar 

  • Rinot O, Levy GJ, Steinberger Y, Svoray T, Eshel G. Soil health assessment: A critical review of current methodologies and a proposed new approach. Sci Total Environ. 2019;648:1484–91.

    Article 
    CAS 

    Google Scholar 

  • Hurisso TT, Culman SW, Zhao K. Repeatability and spatiotemporal variability of emerging soil health indicators relative to routine soil nutrient tests. Soil Sci Soc Am J. 2018;82:939–48.

    Article 
    CAS 

    Google Scholar 

  • Lilburne L, Sparling G, Schipper L. Soil quality monitoring in New Zealand: Development of an interpretative framework. Agric Ecosyst Environ. 2004;104:535–44.

    Article 

    Google Scholar 

  • Moebius-Clune BN, Moebius-Clune DJ, Gugino BK, Idowu OJ, Schindelbeck RR, Ristow AJ, et al. Comprehensive assessment of soil health – the Cornell framework manual, 3rd ed. Ithaca, NY:Cornell University; 2017.

  • Fierer N, Wood SA, Bueno de Mesquita CP. How microbes can, and cannot, be used to assess soil health. Soil Biol Biochem. 2021;153:108111.

    Article 
    CAS 

    Google Scholar 

  • Amsili JP, van Es HM, Schindelbeck RR. Cropping system and soil texture shape soil health outcomes and scoring functions. Soil Secur. 2021;4:100012.

    Article 

    Google Scholar 

  • Wade J, Culman SW, Gasch CK, Lazcano C, Maltais-Landry G, Margenot AJ, et al. Rigorous, empirical, and quantitative: a proposed pipeline for soil health assessments. Soil Biol Biochem. 2022;170:108710.

    Article 
    CAS 

    Google Scholar 

  • Simonin M, Voss KA, Hassett BA, Rocca JD, Wang SY, Bier RL, et al. In search of microbial indicator taxa: shifts in stream bacterial communities along an urbanization gradient. Environ Microbiol. 2019;21:3653–68.

    Article 

    Google Scholar 

  • Bissett A, Brown MV, Siciliano SD, Thrall PH. Microbial community responses to anthropogenically induced environmental change: Towards a systems approach. Ecol Lett. 2013;16:128–39.

    Article 

    Google Scholar 

  • Wilhelm RC, Cardenas E, Maas KR, Leung H, McNeil L, Berch S, et al. Biogeography and organic matter removal shape long-term effects of timber harvesting on forest soil microbial communities. ISME J. 2017;11:2552–68.

    Article 

    Google Scholar 

  • Gibbons SM, Scholz M, Hutchison AL, Dinner AR, Gilbert JA, Colemana ML, et al. Disturbance regimes predictably alter diversity in an ecologically complex bacterial system. MBio. 2016;7:1–10.

    Article 

    Google Scholar 

  • Trivedi P, Delgado-Baquerizo M, Anderson IC, Singh BK. Response of soil properties and microbial communities to agriculture: Implications for primary productivity and soil health indicators. Front Plant Sci. 2016;7:1–13.

    Article 

    Google Scholar 

  • Jiao S, Xu Y, Zhang J, Hao X. Core microbiota in agricultural soils and their potential associations with nutrient cycling. mSystems. 2019;4:1–16.

    Article 

    Google Scholar 

  • Chang HX, Haudenshield JS, Bowen CR, Allen R, Iii W, Parnell JJ, et al. Metagenome-wide association study and machine learning prediction of bulk soil microbiome and crop productivity. Front Microbiol. 2017;8:519.

    Article 

    Google Scholar 

  • Trivedi P, Delgado-Baquerizo M, Jeffries TC, Trivedi C, Anderson IC, Lai K, et al. Soil aggregation and associated microbial communities modify the impact of agricultural management on carbon content. Environ Microbiol. 2017;19:3070–86.

    Article 
    CAS 

    Google Scholar 

  • Armbruster M, Goodall T, Hirsch PR, Ostle N, Puissant J, Fagan KC, et al. Bacterial and archaeal taxa are reliable indicators of soil restoration across distributed calcareous grasslands. Eur J Soil Sci. 2021;72:2430–44.

  • Rieke EL, Cappellazzi SB, Cope M, Liptzin D, Mac Bean G, Greub KLH, et al. Linking soil microbial community structure to potential carbon mineralization: A continental scale assessment of reduced tillage. Soil Biol Biochem. 2022;168:108618.

    Article 
    CAS 

    Google Scholar 

  • Wilhelm RC, Van Es HM, Buckley DH. Predicting measures of soil health using the microbiome and supervised machine learning. Soil Biol Biochem. 2022;164:108472.

    Article 
    CAS 

    Google Scholar 

  • Douglas GM, Maffei VJ, Zaneveld J, Yurgel SN, Brown JR, Taylor CM, et al. PICRUSt2: An improved and customizable approach for metagenome inference 2. bioRxiv. 2020. https://doi.org/10.1101/672295.

  • Gravuer K, Eskelinen A. Nutrient and rainfall additions shift phylogenetically estimated traits of soil microbial communities. Front Microbiol. 2017;8:1–16.

    Article 

    Google Scholar 

  • Chen Y, Maier RM, Barberán A, Neilson JW, Kushwaha P, Maier RM, et al. Life-history strategies of soil microbial communities in an arid ecosystem. ISME J. 2021;15:649–57.

    Article 
    CAS 

    Google Scholar 

  • Fierer N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15:579–90.

    Article 
    CAS 

    Google Scholar 

  • Malik AA, Martiny JBHH, Brodie EL, Martiny AC, Treseder KK, Allison SD, et al. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. 2020;14:1–9.

    Article 
    CAS 

    Google Scholar 

  • Roller BRK, Stoddard SF, Schmidt TM. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat Microbiol. 2016;1:1–7.

  • Nunan N, Schmidt H, Raynaud X, Schmidt H. The ecology of heterogeneity: Soil bacterial communities and C dynamics. Philos Trans R Soc B Biol Sci. 2020;375:20190249.

    Article 
    CAS 

    Google Scholar 

  • Grime JP. Evidence for the existence of three primary strategies in plants and its relevance for ecological and evolutionary theory. Am Nat. 1977;111:1169–94.

    Article 

    Google Scholar 

  • Barnett S, Youngblut ND, Koechli CN, Buckley DH. Multisubstrate DNA stable isotope probing reveals guild structure of bacteria that mediate soil carbon cycling. PNAS. 2021;118:e2115292118.

  • Wilhelm RC, Pepe-Ranney C, Weisenhorn P, Lipton M, Buckley DH. Competitive exclusion and metabolic dependency among microorganisms structure the cellulose economy of an agricultural soil. MBio. 2021;12:1–19.

    Article 

    Google Scholar 

  • Schmidt R, Gravuer K, Bossange AV, Mitchell J, Scow K. Long-term use of cover crops and no-till shift soil microbial community life strategies in agricultural soil. PLoS ONE. 2018;13:1–19.

    Article 

    Google Scholar 

  • Neal AL, Hughes D, Clark IM, Jansson JK, Hirsch PR. Microbiome Aggregated Traits and Assembly Are More Sensitive to Soil Management than Diversity. mSystems 2021;6:e0105620.

  • Lupatini M, Korthals GW, de Hollander M, Janssens TKS, Kuramae EE. Soil microbiome is more heterogeneous in organic than in conventional farming system. Front Microbiol. 2017;7:1–13.

    Article 

    Google Scholar 

  • Koechli C, Campbell AN, Pepe-ranney C, Buckley DH. Assessing fungal contributions to cellulose degradation in soil by using high- throughput stable isotope probing. Soil Biol Biochem. 2019;130:150–8.

    Article 
    CAS 

    Google Scholar 

  • Furtak K, Grządziel J, Gałązka A, Niedźwiecki J. Prevalence of unclassified bacteria in the soil bacterial community from floodplain meadows (fluvisols) under simulated flood conditions revealed by a metataxonomic approachss. Catena. 2020;188:104448.

    Article 
    CAS 

    Google Scholar 

  • Schmidt R, Mitchell J, Scow K. Cover cropping and no-till increase diversity and symbiotroph: saprotroph ratios of soil fungal communities. Soil Biol Biochem. 2019;129:99–109.

    Article 
    CAS 

    Google Scholar 

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.

    Article 
    CAS 

    Google Scholar 

  • Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–43.

    Article 

    Google Scholar 

  • Levy R, Borenstein E. Reverse Ecology: From systems to environments and back. Adv Exp Med Biol. 2012;751:329–45.

    Article 
    CAS 

    Google Scholar 

  • Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, et al. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–8.

    Article 

    Google Scholar 

  • Hamilton JP, Neeno-Eckwall EC, Adhikari BN, Perna NT, Tisserat N, Leach JE, et al. The Comprehensive Phytopathogen Genomics Resource: a web-based resource for data-mining plant pathogen genomes. Database. 2011;2011:bar053.

  • Detheridge AP, Brand G, Fychan R, Crotty FV, Sanderson R, Griffith GW, et al. The legacy effect of cover crops on soil fungal populations in a cereal rotation. Agric Ecosyst Environ. 2016;228:49–61.

    Article 

    Google Scholar 

  • McKenna TP, Crews TE, Kemp L, Sikes BA. Community structure of soil fungi in a novel perennial crop monoculture, annual agriculture, and native prairie reconstruction. PLoS ONE. 2020;15:1–15.

    Article 

    Google Scholar 

  • Rocca JD, Simonin M, Blaszczak JR, Ernakovich JG, Gibbons SM, Midani FS, et al. The Microbiome Stress Project: Toward a global meta-analysis of environmental stressors and their effects on microbial communities. Front Microbiol. 2019;9:3272.

    Article 

    Google Scholar 

  • Ramirez KS, Knight CG, De Hollander M, Brearley FQ, Constantinides B, Cotton A, et al. Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nat Microbiol. 2018;3:189–96.

    Article 
    CAS 

    Google Scholar 

  • Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457–63.

    Article 
    CAS 

    Google Scholar 

  • Lagkouvardos I, Joseph D, Kapfhammer M, Giritli S, Horn M, Haller D, et al. IMNGS: A comprehensive open resource of processed 16S rRNA microbial profiles for ecology and diversity studies. Sci Rep. 2016;6:1–9.

    Article 

    Google Scholar 

  • Jurburg SD, Konzack M, Eisenhauer N, Heintz-Buschart A. The archives are half-empty: a field-wide assessment of the availability of microbial community sequencing data. Commun Biol. 2020;3:474.

  • Emerson JB, Everhart SE, Eversole K, Frost KE, Herr JR, Huerta AI, et al. Community-driven metadata standards for agricultural microbiome research. Phytobiomes J. 2020; 4:115-121.

  • Anderson TH, Martens R. DNA determinations during growth of soil microbial biomasses. Soil Biol Biochem. 2013;57:487–95.

    Article 
    CAS 

    Google Scholar 

  • Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the Miseq Illumina sequencing platform. Appl Environ Microbiol. 2013;79:5112–20.

    Article 
    CAS 

    Google Scholar 

  • Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.

    Article 
    CAS 

    Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.

    Article 

    Google Scholar 

  • Harrell F, Dupont C. Hmisc: Harrell miscellaneous. R Package 2015.

  • Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc. 1995;57:289–300.

    Google Scholar 

  • Weiss S, Van Treuren W, Lozupone C, Faust K, Friedman J, Deng Y, et al. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J. 2016;10:1669–81.

    Article 
    CAS 

    Google Scholar 

  • Mills RH, Dulai PS, Vázquez-Baeza Y, Sauceda C, Daniel N, Gerner RR, et al. Multi-omics analyses of the ulcerative colitis gut microbiome link Bacteroides vulgatus proteases with disease severity. Nat Microbiol. 2022;7:262–76.

    Article 
    CAS 

    Google Scholar 

  • De Cáceres M, Legendre P, De Caceres M, Legendre P. Associations between species and groups of sites: indices and statistical inference. Ecology. 2009;90:3566–74.

    Article 

    Google Scholar 

  • Markowitz VM, Ivanova NN, Szeto E, Palaniappan K, Chu K, Dalevi D, et al. IMG/M: A data management and analysis system for metagenomes. Nucleic Acids Res. 2008;36:534–8.

    Article 

    Google Scholar 

  • Stoddard SF, Smith BJ, Hein R, Roller BRK, Schmidt M. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res. 2015;43:593–8.

  • R Core Team. R: a language and environment for statistical computing. R Foundation. 2020.

  • Wickham H. Reshaping data with the reshape package. J Stat Soft. 2007;21:1–20.

    Article 

    Google Scholar 

  • Wickham H. The split-apply-combine strategy for data analysis. J Stat Soft. 2009;40:1–29.

    Google Scholar 

  • Wickham H. Elegant graphics for data analysis. Media. 2009;35:211.

    Google Scholar 

  • McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013;8:e61217.

  • Grömping U. Relative importance for linear regression in R: the package relaimpo. J Stat Softw. 2006;17:1–27.

    Article 

    Google Scholar 

  • Bastian M, Heymann S. Gephi: an open source software for exploring and manipulating networks. Proc Int AAAI Conf Web Soc Media. 2009:361–2.

  • Hu Y. Efficient, high-quality force-directed graph drawing. Math J. 2006;10:37–71.

    Google Scholar 

  • Ranea JAG, Grant A, Thornton JM, Orengo CA. Microeconomic principles explain an optimal genome size in bacteria. Trends Genet. 2005;21:21–5.

    Article 
    CAS 

    Google Scholar 

  • Nielsen DA, Fierer N, Geoghegan JL, Gillings MR, Gumerov V, Madin JS, et al. Aerobic bacteria and archaea tend to have larger and more versatile genomes. Oikos. 2021;130:501–11.

    Article 
    CAS 

    Google Scholar 

  • Chen Y, Leung PM, Wood JL, Bay SK, Kessler AJ, Shelley G, et al. Metabolic flexibility allows bacterial habitat generalists to become dominant in a frequently disturbed ecosystem. ISME J. 2021;15:2986–3004.

    Article 
    CAS 

    Google Scholar 

  • Brewer TE, Handley KM, Carini P, Gilbert JA, Fierer N. Genome reduction in an abundant and ubiquitous soil bacterium ‘Candidatus Udaeobacter copiosus’. Nat Microbiol. 2016;2:16198.

  • Willms IM, Rudolph AY, Göschel I, Bolz SH, Schneider D, Penone C, et al. Globally Abundant “Candidatus Udaeobacter” Benefits from Release of Antibiotics in Soil and Potentially Performs Trace Gas Scavenging. mSphere. 2020;5:1–17.

    Article 

    Google Scholar 

  • Kaboré OD, Godreuil S, Drancourt M. Planctomycetes as host-associated bacteria: a perspective that holds promise for their future isolations, by mimicking their native environmental niches in clinical microbiology laboratories. Front Cell Infect Microbiol. 2020;10:1–19.

    Article 

    Google Scholar 

  • Martens-Habbena W, Berube PM, Urakawa H, De La Torre JR, Stahl DA. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature. 2009;461:976–9.

    Article 
    CAS 

    Google Scholar 

  • Zhalnina K, De Quadros PD, Gano KA, Davis-Richardson A, Fagen JR, Brown CT, et al. Ca. Nitrososphaera and Bradyrhizobium are inversely correlated and related to agricultural practices in long-term field experiments. Front Microbiol. 2013;4:1–13.

    Article 

    Google Scholar 

  • Land M, Hauser L, Jun S, Nookaew I, Leuze MR, Ahn T, et al. Insights from 20 years of bacterial genome sequencing. Funct Integr Genom. 2015;15:141–61.

    Article 
    CAS 

    Google Scholar 

  • Gil R, Latorre A, Postal A. Factors behind junk DNA in bacteria. Genes (Basel). 2012;3:634–50.

    Article 

    Google Scholar 

  • Williamson KE, Radosevich M, Wommack KE. Abundance and diversity of viruses in six Delaware soils. Appl Environ Microbiol. 2005;71:3119–25.

    Article 
    CAS 

    Google Scholar 

  • Williamson KE, Corzo KA, Drissi CL, Buckingham JM, Thompson CP, Helton RR. Estimates of viral abundance in soils are strongly influenced by extraction and enumeration methods. Biol Fertil Soils. 2013;49:857–69.

    Article 

    Google Scholar 

  • Van Goethem MW, Swenson TL, Trubl G, Roux S, Northen TR. Characteristics of wetting-induced bacteriophage blooms in biological soil crust. MBio. 2019;10:e02287-19.

  • Westra ER, Van Houte S, Gandon S, Whitaker R, Van Houte S, Gandon S, et al. The ecology and evolution of microbial CRISPR-Cas adaptive immune systems. Philos Trans R Soc B Biol Sci. 2019;374:20190101.

  • Martinez-Gutierrez CA, Aylward FO. Genome size distributions in bacteria and archaea are strongly linked to evolutionary history at broad phylogenetic scales. PLoS Genet. 2022;18:1–17.

    Article 

    Google Scholar 

  • Saifuddin M, Bhatnagar JM, Finzi AC, Segrè D, Finzi AC. Microbial carbon use efficiency predicted from genome-scale metabolic models. Nat Commun. 2019;10:1–10.

    Article 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Changes in interactions over ecological time scales influence single-cell growth dynamics in a metabolically coupled marine microbial community

    Rhizobial migration toward roots mediated by FadL-ExoFQP modulation of extracellular long-chain AHLs