in

Enhanced regional connectivity between western North American national parks will increase persistence of mammal species diversity

  • Newmark, W. D. A land-bridge island perspective on mammalian extinctions in western North American parks. Nature 325, 430–432 (1987).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Newmark, W. D. Isolation of African protected areas. Front. Ecol. Environ. 6, 321–328 (2008).

    Article 

    Google Scholar 

  • Radeloff, V. C. et al. Housing growth in and near United States protected areas limits their conservation value. Proc. Natl. Acad. Sci. U. S. A. 107, 940–945 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jones, K. R. et al. One-third of global protected land is under intense human pressure. Science 360, 788–791 (2018).

    Article 
    CAS 

    Google Scholar 

  • Elsen, P. R., Monahan, W. B., Dougherty, E. R. & Merenlender, A. M. Keeping pace with climate change in global terrestrial protected areas. Sci. Adv. https://doi.org/10.1126/sciadv.aay0814 (2020).

    Article 

    Google Scholar 

  • Wasser, S. K. et al. Genetic assignment of large seizures of elephant ivory reveals Africa’s major poaching hotspots. Science 349, 84–87 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Davis, C. R. & Hansen, A. J. Trajectories in land use change around U,S. national parks and challenges and opportunities for management. Ecol. Appl. 21, 3299–3316 (2011).

    Article 

    Google Scholar 

  • Newmark, W. D. Extinction of mammal populations in western North American national parks. Conserv. Biol. 9, 512–526 (1995).

    Article 

    Google Scholar 

  • Newmark, W. D. Insularization of Tanzanian parks and the local extinction of large mammals. Conserv. Biol. 10, 1549–1556 (1996).

    Article 

    Google Scholar 

  • Brashares, J. S., Arcese, P. & Sam, M. K. Human demography and reserve size predict wildlife extinction in West Africa. Proc. R. Soc. B Biol. Sci. 268, 2473–2478 (2001).

    Article 
    CAS 

    Google Scholar 

  • Woodroffe, R. & Ginsberg, J. R. Edge effects and the extinction of populations inside protected areas. Science 280, 2126–2128 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Turner, M. G. & Dale, V. H. Comparing large, infrequent disturbances: What have we learned?. Ecosystems 1, 493–496 (1998).

    Article 

    Google Scholar 

  • Berger, J. The last mile: How to sustain long-distance migration in mammals. Conserv. Biol. 18, 320–331 (2004).

    Article 

    Google Scholar 

  • Bolger, D. T., Newmark, W. D., Morrison, T. A. & Doak, D. F. The need for integrative approaches to understand and conserve migratory ungulates. Ecol. Lett. 11, 63–77 (2008).

    Google Scholar 

  • Sawyer, H., Kauffman, M. J., Nielson, R. M. & Horne, J. S. Identifying and prioritizing ungulate migration routes for landscape-level conservation. Ecol. Appl. 19, 2016–2025 (2009).

    Article 

    Google Scholar 

  • Tucker, M. A. et al. Moving in the anthropocene: Global reductions in terrestrial mammalian movements. Science 469, 466–469 (2018).

    Article 
    ADS 

    Google Scholar 

  • Soulé, M. E. & Terborgh, J. Conserving nature at regional and continental scales-a scientific program for North America. Bioscience 49, 809–817 (1999).

    Article 

    Google Scholar 

  • Hilty, J. et al. Guidelines for conserving connectivity through ecological networks and corridors. Best Pract. Prot. Area Guidel. Ser. 30, 122 (2020).

    Google Scholar 

  • Haddad, N. & Tewksbury, J. Impacts of corridors on populations and communities. in Connectivity Conservation (eds. Crooks, K. R. & Sanjayan, M.) 390–415 (Cambridge University Press, 2010).

    Google Scholar 

  • Ramiadantsoa, T., Ovaskainen, O., Rybicki, J. & Hanski, I. Large-scale habitat corridors for biodiversity conservation: A forest corridor in Madagascar. PLoS One 10, 1–18 (2015).

    Article 
    CAS 

    Google Scholar 

  • Newmark, W. D., Jenkins, C. N., Pimm, S. L., McNeally, P. B. & Halley, J. M. Targeted habitat restoration can reduce extinction rates in fragmented forests. Proc. Natl. Acad. Sci. USA. 114, 9635–9640 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Diamond, J. M. Biogeographic kinetics: Estimation of relaxation times for avifaunas of southwest Pacific islands. Proc. Natl. Acad. Sci. 69, 3199–3203 (1972).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Terborgh, J. Preservation of natural diversity: The problem of extinction prone species. Bioscience 24, 715–722 (1974).

    Article 

    Google Scholar 

  • Tilman, D., May, R. M., Lehman, C. L. & Nowak, M. A. Habitat destruction and the extinction debt revisited. Nature 371, 65–66 (1994).

    Article 
    ADS 

    Google Scholar 

  • Halley, J. M., Monokrousos, N., Mazaris, A. D., Newmark, W. D. & Vokou, D. Dynamics of extinction debt across five taxonomic groups. Nat. Commun. 7, 1–6 (2016).

    Article 

    Google Scholar 

  • Wearn, O. R., Reuman, D. C. & Ewers, R. M. Extinction debt and windows of conservation opportunity in the Brazilian amazon. Science 337, 228–232 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hanski, I. Extinction debt and species credit in boreal forests: Modelling the consequences of different approaches to conservation. Ann. Zool. Fennici 37, 271–280 (2000).

    Google Scholar 

  • LaBarbera, M. Analyzing body size as a factor in ecology and evolution. Annu. Rev. Ecol. Syst. 20, 97–117 (1989).

    Article 

    Google Scholar 

  • Oakleaf, J. K. et al. Habitat selection by recolonizing wolves in the northern Rocky mountains of the United States. J. Wildl. Manage. 70, 554–563 (2006).

    Article 

    Google Scholar 

  • Cushman, S. A., McKelvey, K. S. & Schwartz, M. K. Use of empirically derived source-destination models to map regional conservation corridors. Conserv. Biol. 23, 368–376 (2009).

    Article 

    Google Scholar 

  • Schwartz, M. K. et al. Wolverine gene flow across a narrow climatic niche. Ecology 90, 3222–3232 (2014).

    Article 

    Google Scholar 

  • McKelvey, K. S. et al. Climate change predicted to shift wolverine distributions, connectivity, and dispersal corridors. Ecol. Appl. 21, 2882–2897 (2011).

    Article 

    Google Scholar 

  • Carroll, C., Mcrae, B. H. & Brookes, A. Use of linkage mapping and centrality analysis across habitat gradients to conserve connectivity of gray wolf populations in western North America. Conserv. Biol. 26, 78–87 (2012).

    Article 

    Google Scholar 

  • Parks, S. A., McKelvey, K. S. & Schwartz, M. K. Effects of weighting schemes on the identification of wildlife corridors generated with least-cost methods. Conserv. Biol. 27, 145–154 (2013).

    Article 

    Google Scholar 

  • Peck, C. P. et al. Potential paths for male-mediated gene flow to and from an isolated grizzly bear population. Ecosphere 8, e01969 (2017).

    Article 

    Google Scholar 

  • Wild Migrations: Atlas of Wyoming’s Ungulates. (Oregon State University, 2018).

  • Singleton, P. H., Gaines, W. L. & Lehmkuhl, J. F. Landscape permeability for large carnivores in Washington: A geographic information system weighted-distance and least-cost corridor assessment. (2002).

  • Long, R. A. et al. The Cascades carnivore connectivity project: A landscape genetic assessment of connectivity in Washington’s north Cascades ecosystem. Final report for the Seattle City Light Wildlife Research Program (2013).

  • Diamond, J. M. The island dilemma: Lessons of modern biogeographic studies for the design of natural reserves. Biol. Conserv. 7, 129–146 (1975).

    Article 

    Google Scholar 

  • Wilson, E. O. & Willis, E. O. Applied biogeography. In Ecological structure of ecological communities (eds. Cody, M. L, & Diamond, J. M.) 522–534 (Harvard University Press, 1975)

    Google Scholar 

  • Halley, J. M. & Iwasa, Y. Neutral theory as a predictor of avifaunal extinctions after habitat loss. Proc. Natl. Acad. Sci. USA 108, 2316–2321 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Cushman, S. A., Lewis, J. S. & Landguth, E. L. Evaluating the intersection of a regional wildlife connectivity network with highways. Mov. Ecol. 1, 1–11 (2013).

    Article 

    Google Scholar 

  • Singleton, P. H. & Lehmkuhl, J. F. I-90 Snoqualmie pass wildlife habitat linkage assessment. Final Report. USDA, Pacific Northwest Research Station. (2000).

  • Craighead, L., Craighead, A., Oeschslia, L. & Kociolek, A. Bozeman pass post-fencing wildlife monitoring. Final Report. FHWA/MT-10-006/8173 (2011).

  • Andis, A. Z., Huijser, M. P. & Broberg, L. Performance of arch-style road crossing structures from relative movement rates of large mammals. Front. Ecol. Evol. 5, 1–13 (2017).

    Article 

    Google Scholar 

  • Millward, L. Small mammal microhabitat use and species composition at a wildlife crossing structure compared with nearby forest (Central Washington University, 2018).

    Google Scholar 

  • Bischof, R., Steyaert, S. M. J. G. & Kindberg, J. Caught in the mesh: Roads and their network-scale impediment to animal movement. Ecography 40, 1369–1380 (2017).

    Article 

    Google Scholar 

  • Balkenhol, N. & Waits, L. P. Molecular road ecology: Exploring the potential of genetics for investigating transportation impacts on wildlife. Mol. Ecol. 18, 4151–4164 (2009).

    Article 

    Google Scholar 

  • Clevenger, A. P. & Wierzchowski, J. Maintaining and restoring connectivity in landscapes fragmented by roads. In Connectivity Conservation, (eds. Crooks, K. R. & Sanjayan, M.) 502–535 (Cambridge University Press, 2010.)

    Google Scholar 

  • Sawaya, M. A., Kalinowski, S. T. & Clevenger, A. P. Genetic connectivity for two bear species at wildlife crossing structures in Banff National Park. Proc. R. Soc. B Biol. Sci. 281, 20131705 (2014).

    Article 

    Google Scholar 

  • Sawaya, M. A., Clevenger, A. P. & Schwartz, M. K. Demographic fragmentation of a protected wolverine population bisected by a major transportation corridor. Biol. Conserv. 236, 616–625 (2019).

    Article 

    Google Scholar 

  • Kamal, S., Grodzińska-Jurczak, M. & Brown, G. Conservation on private land: A review of global strategies with a proposed classification system. J. Environ. Plan. Manag. 58, 576–597 (2015).

    Article 

    Google Scholar 

  • Wasserman, T. N., Cushman, S. A., Littell, J. S., Shirk, A. J. & Landguth, E. L. Population connectivity and genetic diversity of American marten (Martes americana) in the United States northern Rocky Mountains in a climate change context. Conserv. Genet. 14, 529–541 (2013).

    Article 

    Google Scholar 

  • Wasserman, T. N., Cushman, S. A., Shirk, A. S., Landguth, E. L. & Littell, J. S. Simulating the effects of climate change on population connectivity of American marten (Martes americana) in the northern Rocky Mountains, USA. Landsc. Ecol. 27, 211–225 (2012).

    Article 

    Google Scholar 

  • Cushman, S. A., Landguth, E. L. & Flather, C. H. Evaluating the sufficiency of protected lands for maintaining wildlife population connectivity in the U.S. northern Rocky Mountains. Divers. Distrib. 18, 873–884 (2012).

    Article 

    Google Scholar 

  • Beier, P., Spencer, W., Baldwin, R. F. & Mcrae, B. H. Toward best practices for developing regional connectivity maps. Conserv. Biol. 25, 879–892 (2011).

    Article 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. (2020).


  • Source: Ecology - nature.com

    A new way to assess radiation damage in reactors

    Looking to the past to prepare for an uncertain future