in

Enhancing the ecological value of oil palm agriculture through set-asides

  • Phalan, B. et al. Crop expansion and conservation priorities in tropical countries. PLoS ONE 8, e51759 (2013).

    Article 
    CAS 

    Google Scholar 

  • Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).

    Article 
    CAS 

    Google Scholar 

  • Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018).

  • Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

    Article 
    CAS 

    Google Scholar 

  • Searchinger, T. D., Wirsenius, S., Beringer, T. & Dumas, P. Assessing the efficiency of changes in land use for mitigating climate change. Nature 564, 249–253 (2018).

  • Edwards, D. P. et al. Conservation of tropical forests in the Anthropocene. Curr. Biol. 29, R1008–R1020 (2019).

    Article 
    CAS 

    Google Scholar 

  • Newbold, T. et al. Global patterns of terrestrial assemblage turnover within and among land uses. Ecography 39, 1151–1163 (2016).

    Article 

    Google Scholar 

  • Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    Article 
    CAS 

    Google Scholar 

  • Gibbs, H. K. et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl Acad. Sci. USA 107, 16732–16737 (2010).

  • Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article 
    CAS 

    Google Scholar 

  • Newbold, T. et al. A global model of the response of tropical and sub-tropical forest biodiversity to anthropogenic pressures. Proc. R. Soc. B 281, 20141371 (2014).

    Article 

    Google Scholar 

  • Clough, Y. et al. Combining high biodiversity with high yields in tropical agroforests. Proc. Natl Acad. Sci. USA 108, 8311–8316 (2011).

    Article 
    CAS 

    Google Scholar 

  • Giam, X. Global biodiversity loss from tropical deforestation. Proc. Natl Acad. Sci. USA 114, 5775–5777 (2017).

    Article 
    CAS 

    Google Scholar 

  • van der Werf, G. R. et al. CO2 emissions from forest loss. Nat. Geosci. 2, 737–738 (2009).

    Article 

    Google Scholar 

  • Harvey, C. A. et al. Climate‐smart landscapes: opportunities and challenges for integrating adaptation and mitigation in tropical agriculture. Conserv. Lett. 7, 77–90 (2014).

    Article 

    Google Scholar 

  • Harris, N. L. et al. Baseline map of carbon emissions from deforestation in tropical regions. Science 336, 1573–1576 (2012).

    Article 
    CAS 

    Google Scholar 

  • Song, X.-P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).

  • Quezada, J. C., Etter, A., Ghazoul, J., Buttler, A. & Guillaume, T. Carbon neutral expansion of oil palm plantations in the Neotropics. Sci. Adv. 5, eaaw4418 (2019).

    Article 
    CAS 

    Google Scholar 

  • Oil Palm and Biodiversity: a Situation Analysis by the IUCN Oil Palm Task Force (International Union for Conservation of Nature, 2018). https://doi.org/10.2305/IUCN.CH.2018.11.en

  • Meijaard, E. & Sheil, D. The moral minefield of ethical oil palm and sustainable development. Front. For. Glob. Change 2, 22 (2019).

  • The Future of Food and Agriculture – Alternative Pathways to 2050 (FAO, 2018).

  • Henders, S., Persson, U. M. & Kastner, T. Trading forests: land-use change and carbon emissions embodied in production and exports of forest-risk commodities. Environ. Res. Lett. 10, 125012 (2015).

    Article 

    Google Scholar 

  • Donofrio, S., Rothrock, P. & Leonard, J. Supply Change: Tracking Corporate Commitments to Deforestation-Free Supply Chains (Forest Trends, 2017).

  • Terrenoire, E., Hauglustaine, D. A., Gasser, T. & Penanhoat, O. The contribution of carbon dioxide emissions from the aviation sector to future climate change. Environ. Res. Lett. 14, 084019 (2019).

    Article 
    CAS 

    Google Scholar 

  • Parsons, S., Raikova, S. & Chuck, C. J. The viability and desirability of replacing palm oil. Nat. Sustain. 3, 412–418 (2020).

    Article 

    Google Scholar 

  • Taheripour, F., Hertel, T. W. & Ramankutty, N. Market-mediated responses confound policies to limit deforestation from oil palm expansion in Malaysia and Indonesia. Proc. Natl Acad. Sci. USA 116, 19193–19199 (2019).

    Article 
    CAS 

    Google Scholar 

  • Laurance, W. F. et al. Improving the performance of the roundtable on sustainable palm oil for nature conservation. Conserv. Biol. 24, 377–381 (2010).

    Article 

    Google Scholar 

  • Meijaard, E., Abrams, J. F., Juffe-Bignoli, D., Voigt, M. & Sheil, D. Coconut oil, conservation and the conscientious consumer. Curr. Biol. 30, R757–R758 (2020).

    Article 
    CAS 

    Google Scholar 

  • Driving Change With Sustainable Palm Oil (Roundtable on Sustainable Palm Oil, accessed August 2022). https://rspo.org/about

  • Garrett, R. D., Carlson, K. M., Rueda, X. & Noojipady, P. Assessing the potential additionality of certification by the round table on responsible soybeans and the roundtable on sustainable palm oil. Environ. Res. Lett. 11, 045003 (2016).

    Article 

    Google Scholar 

  • Mittermeier, R. A., Myers, N., Mittermeier, C. G. & Robles, G. Hotspots: Earth’s Biologically Richest and Most Endangered Terrestrial Ecoregions (Conservation International, 1999).

  • Gaveau, D. L. et al. Rapid conversions and avoided deforestation: examining four decades of industrial plantation expansion in Borneo. Sci. Rep. 6, 32017 (2016).

    Article 
    CAS 

    Google Scholar 

  • Luke, S. H. et al. Riparian buffers in tropical agriculture: scientific support, effectiveness and directions for policy. J. Appl. Ecol. 56, 85–92 (2019).

    Article 

    Google Scholar 

  • Mitchell, S. L. et al. Riparian reserves help protect forest bird communities in oil palm dominated landscapes. J. Appl. Ecol. 55, 2744–2755 (2018).

    Article 

    Google Scholar 

  • Scriven, S. A. et al. Testing the benefits of conservation set-asides for improved habitat connectivity in tropical agricultural landscapes. J. Appl. Ecol. 56, 2274–2285 (2019).

    Article 

    Google Scholar 

  • Deere, N. J. et al. Riparian buffers can help mitigate biodiversity declines in oil palm agriculture. Front. Ecol. Environ. 20, 459–466 (2021).

  • Woodham, C. R. et al. Effects of replanting and retention of mature oil palm riparian buffers on ecosystem functioning in oil palm plantations. Front. Glob. Change 2, 29 (2019).

    Article 

    Google Scholar 

  • Carlson, K. M. et al. Influence of watershed‐climate interactions on stream temperature, sediment yield, and metabolism along a land use intensity gradient in Indonesian Borneo. J. Geophys. Res. Biogeosci. 119, 1110–1128 (2014).

    Article 

    Google Scholar 

  • Carlson, K. M. et al. Effect of oil palm sustainability certification on deforestation and fire in Indonesia. Proc. Natl Acad. Sci. USA 115, 121–126 (2018).

    Article 
    CAS 

    Google Scholar 

  • Fleiss, S. et al. Conservation set-asides improve carbon storage and support associated plant diversity in certified sustainable oil palm plantations. Biol. Conserv. 248, 108631 (2020).

    Article 

    Google Scholar 

  • Wunder, S., Angelsen, A. & Belcher, B. Forests, livelihoods, and conservation: broadening the empirical base. World Dev. 64, S1–S11 (2014).

  • Struebig, M. J. et al. Quantifying the biodiversity value of repeatedly logged rainforests: gradient and comparative approaches from Borneo. Adv. Ecol. Res. 48, 183–224 (2013).

    Article 

    Google Scholar 

  • Shevade, V. S. & Loboda, T. V. Oil palm plantations in Peninsular Malaysia: determinants and constraints on expansion. PLoS ONE 14, e0210628 (2019).

    Article 
    CAS 

    Google Scholar 

  • Pirker, J., Mosnier, A., Kraxner, F., Havlík, P. & Obersteiner, M. What are the limits to oil palm expansion? Glob. Environ. Change 40, 73–81 (2016).

    Article 

    Google Scholar 

  • Launching the RSPO Jurisdictional Approach (JA) Piloting Framework (Roundtable on Sustainable Palm Oil, accessed August 2022).

  • Abram, N. K. et al. Synergies for improving oil palm production and forest conservation in floodplain landscapes. PLoS ONE 9, e95388 (2014).

    Article 

    Google Scholar 

  • Othman, N. et al. Shift of paradigm needed towards improving human–elephant coexistence in monoculture landscapes in Sabah. Int. Zoo Yearb. 53, 161–173 (2019).

    Article 

    Google Scholar 

  • Horton, A. J. et al. Can riparian forest buffers increase yields from oil palm plantations? Earths Future 6, 1082–1096 (2018).

    Article 

    Google Scholar 

  • Ewers, R. M. et al. A large-scale forest fragmentation experiment: the Stability of Altered Forest Ecosystems Project. Phil. Trans. R. Soc. Lond. B 366, 3292–3302 (2011).

    Article 

    Google Scholar 

  • Pfeifer, M. et al. Creation of forest edges has a global impact on forest vertebrates. Nature 551, 187–191 (2017).

  • Ewers, R. M., Thorpe, S. & Didham, R. K. Synergistic interactions between edge and area effects in a heavily fragmented landscape. Ecology 88, 96–106 (2007).

    Article 

    Google Scholar 

  • Deere, N. J. et al. High carbon stock forests provide co-benefits for tropical biodiversity. J. Appl. Ecol. 55, 997–1008 (2018).

    Article 
    CAS 

    Google Scholar 

  • Hemprich-Bennett, D. R. et al. Altered structure of bat–prey interaction networks in logged tropical forests revealed by metabarcoding. Mol. Ecol. 30, 5844–5857 (2021).

    Article 

    Google Scholar 

  • Williamson, J. et al. Riparian buffers act as microclimatic refugia in oil palm landscapes. J. Appl. Ecol. 58, 431–442 (2021).

    Article 

    Google Scholar 

  • Slade, E. M., Mann, D. J. & Lewis, O. T. Biodiversity and ecosystem function of tropical forest dung beetles under contrasting logging regimes. Biol. Conserv. 144, 166–174 (2011).

    Article 

    Google Scholar 

  • Gray, R. E. J. et al. Movement of forest-dependent dung beetles through riparian buffers in Bornean oil palm plantations. J. Appl. Ecol. 59, 238–250 (2022).

  • Woodman, S. M. et al. esdm: a tool for creating and exploring ensembles of predictions from species distribution and abundance models. Methods Ecol. Evol. 10, 1923–1933 (2019).

    Article 

    Google Scholar 

  • Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28, 385–393 (2005).

    Article 

    Google Scholar 

  • Piccini, I. et al. Greenhouse gas emissions from dung pats vary with dung beetle species and with assemblage composition. PloS ONE 12, e0178077 (2017).

    Article 

    Google Scholar 

  • Raine, E. H. & Slade, E. M. Dung beetle–mammal associations: methods, research trends and future directions. Proc. R. Soc. B 286, 20182002 (2019).

    Article 

    Google Scholar 

  • Nichols, E., Gardner, T., Peres, C., Spector, S. & Network, S. R. Co‐declining mammals and dung beetles: an impending ecological cascade. Oikos 118, 481–487 (2009).

    Article 

    Google Scholar 

  • Asner, G. P. et al. Mapped aboveground carbon stocks to advance forest conservation and recovery in Malaysian Borneo. Biol. Conserv. 217, 289–310 (2018).

    Article 

    Google Scholar 

  • Jucker, T. et al. Estimating aboveground carbon density and its uncertainty in Borneo’s structurally complex tropical forests using airborne laser scanning. Biogeosciences 15, 3811–3830 (2018).

    Article 

    Google Scholar 

  • Philipson, C. D. et al. Active restoration accelerates the carbon recovery of human-modified tropical forests. Science 369, 838–841 (2020).

    Article 
    CAS 

    Google Scholar 

  • Nunes, M. H. et al. Recovery of logged forest fragments in a human-modified tropical landscape during the 2015–16 El Niño. Nat. Commun. 12, 1526 (2021).

    Article 
    CAS 

    Google Scholar 

  • Woittiez, L. S., van Wijk, M. T., Slingerland, M., van Noordwijk, M. & Giller, K. E. Yield gaps in oil palm: a quantitative review of contributing factors. Eur. J. Agron. 83, 57–77 (2017).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Rescuing small plastics from the waste stream

    Scenarios of land use and land cover change in the Colombian Amazon to evaluate alternative post-conflict pathways