Preparation of the pao cai soup
First, 35 kg of white radish (Raphanus sativus), 35 kg of cabbage (Brassica oleracea), 2 kg of chili pepper (Capsicum frutescens), 1 kg of ginger (Zingiber officinale), 1 kg of peppercorns (Zanthoxylum bungeanum), 2.5 kg of rock sugar, and 210 kg of cold boiled water (containing 6% salt) were divided into six ceramic jars. After 7 days of natural fermentation at room temperature, the pao cai was filtered out with sterile gauze to obtain 200 kg of pao cai soup. To ensure an even distribution of microorganisms in the soup, the soup was mixed well and then left to rest for 12 h, the supernatant was taken, and the soup was left to rest for 12 h again.
The plants used in this study were cultivated vegetables which purchased from the vegetable market at the study site. All local, national or international guidelines and legislation were adhered to in the production of this study.
Establishment of the microcosm system
Seventy-eight for each size of 10 ml, 20 ml, 50 ml, 100 ml, 250 ml, 500 ml, and 1000 ml sterile glass culture flasks were filled with pao cai soup, the bottle mouth was sealed with sterile sealing film, and the bottle was capped without leaving any air (Fig. 1). Each flask became a microcosm and was cultured in a 25 °C incubator.
Sample collection
Before the microcosm system was established, a sample of well-mixed pao cai soup was taken as a reference to establish background biodiversity. The microbial community dynamics should change the fastest at the beginning of the microcosm system establishment and gradually become slower over time. Considering the workload and cost, this study collected samples daily for 1–10 day after the establishment of the microcosm and then collected every 2 days for 10–30 day and every 5 days for 30–60 day. Three different microcosms of the same volume were established. Monitoring was carried out for 60 days, and a total of 546 samples of 7 volumetric gradients were obtained at 26 time points. At the time of sampling, the pao cai soup in the microcosm was mixed, and 50 mL of sample (10 mL of sample was collected for microcosm systems with a volume of less than 50 mL) was collected. The sample was centrifuged at 8000 rpm for 10 min, the supernatant was collected for pH determination, and the pellet was stored in a − 80 °C freezer.
Microbial analyses
Microbial DNA was extracted from pao cai samples using the E.Z.N.A.® Soil DNA Kit (Omega Biotek, Norcross, GA, U.S.) according to the manufacturer’s protocols. For bacteria, we targeted the V3-V4 region of the 16S ribosomal RNA (rRNA) gene, using the 338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-GGACTACHVGGGTWTCTAAT-3′) primer pairs. For fungi, we targeted the ITS1-1F region of the nuclear ribosomal internal transcribed spacer region (ITS rDNA) gene, using ITS1-1F-F (5′-CTTGGTCATTTAGAGGAAGTAA-3′) and ITS-1F-R (5′-GCTGCGTTCTTCATCGATGC-3′). PCRs were performed in triplicate in a 20 μL mixture containing 4 μL of 5 × FastPfu Buffer, 2 μL of 2.5 mM dNTPs, 0.8 μL of each primer (5 μM), 0.4 μL of FastPfu Polymerase and 10 ng of template DNA. The PCR program for the 16S rRNA gene was as follows: 3 min of denaturation at 95 °C; 27 cycles of 30 s at 95 °C, 30 s of annealing at 55 °C, and 45 s of elongation at 72 °C; and a final extension at 72 °C for 10 min. For the ITS1-1F region, the PCR program was as follows: samples were initially denatured at 98 °C for 1 min, followed by 30 cycles of denaturation at 98 °C for 10 s, primer annealing at 50 °C for 30 s, and extension at 72 °C for 30 s. A final extension step of 5 min at 72 °C was added to ensure complete amplification of the target region. The resulting PCR products were extracted from a 2% agarose gel, further purified using the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences, Union City, CA, USA) and quantified using QuantiFluor™-ST (Promega, Madison, WI, USA).
Purified amplicons were pooled in equimolar amounts and paired-end sequenced (2 × 300) on an Illumina NovaSeq platform (Illumina, San Diego, CA, USA) according to standard protocols. The analysis was conducted by following the “Atacama soil microbiome tutorial” of QIIME2 docs along with customized program scripts (https://docs.qiime2.org/2019.1/). Briefly, raw data FASTQ files were imported in the QIIME2 system using the qiime tools import program. Demultiplexed sequences from each sample were quality filtered, trimmed, denoised, and merged, and then the chimeric sequences were identified and removed using the QIIME2 DADA2 plugin to obtain the feature table of amplicon sequence variants (ASVs)24. Compared with traditional OTU that clusters at 97% similarity, ASV has higher accuracy, equivalent to 99% similarity clustering. The QIIME2 feature-classifier plugin was then used to align ASV sequences to the pretrained GREENGENES 13_8 99% database (trimmed to the V3-V4 region bound by the 338F/806R primer pair for bacteria) and UNITE database (for fungi) to generate the taxonomy table25. Any contaminating mitochondrial and chloroplast sequences were filtered using the QIIME2 feature-table plugin. Based on the sequence number of the lowest sample, perform the resampling to make the sequence number equal for each sample. Due to the random nature of sequencing, ASVs specific to each sample in this study were present. To reduce the uncertainty introduced by the sequencing process, we filtered out rare ASVs with less than 0.001% of the total sequence volume.
Data analysis
In this study, the data of fungi and bacteria were integrated and analyzed, and all microbial diversity appearing in the text represent the sum of all fungi and bacteria. Species richness is equal to the number of taxa, which is equal to the total number of all bacterial and fungal ASVs. The vegan package in R 4.2.1 was used to calculate the species richness of each sample based on the ASV feature table26. Using flask volume instead of area, SAR fitting was performed using a semi-logarithmic model, and its significance was tested. The semi-logarithmic model is the function S = c + b*logA, where S is species richness, A is area (in this case, volume is used instead), and b and c are fit parameters27.
The microcosmic system in this study is hermetically sealed, and all microorganisms originate from a single portion of well-mixed paocai soup (ie species pool). The speciation process in the 60-day experimental system should be negligible due to the short experimental period. The extinction rate of a microcosm system is equal to the number of ASVs lost in the microcosm system compared to the species pool divided by the total number of ASVs in the species pool. The extinction rate is the number of extinct ASVs in each system compared to the species pool. Pearson correlation analysis was performed with volume as the independent variable and extinction rate as the dependent variable to determine the correlation between volume and extinction rate at each time point. When microorganisms of a microcosmic system disappear entirely or cannot be detected, the microcosm is recorded as an annihilated microcosm. The annihilation rate at a time point is equal to the number of microcosms annihilated at that time, divided by the total number of microcosms. The difference between the extinction rate and annihilation rate defined in this paper is that the extinction rate is for ASVs within each sample, and the annihilation rate is for microcosmic system at each sampling time point. The two indicators jointly characterize the local extinction of microorganisms from different perspectives. Non-linear regression with a bell-shaped form was performed with time as an independent variable and pH and annihilation rate as dependent variables, and regression lines were plotted based on R 4.2.1.
According to the taxonomy table, bacterial ASVs were divided into acid-producing and non-acid-producing categories, and their extinction rates were calculated separately. The agricola, ggplot2, vegan and ggpubr packages were used to draw alpha diversity box plots and perform the Wilcoxon rank sum test for differences between groups26,28,29,30. Non-metric multidimensional scaling (NMDS) analysis was performed with the vegan package based on Bray–Curtis dissimilarity. In addition, the potential Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologue (KO) functional profiles of microbial communities were predicted with PICRUSt31. Resistance-related genes were screened using the gene function predictions. The relationship between the relative abundance of resistance-related genes and the volume of the microcosm was analysed by Pearson correlation, and a forest map was plotted to present the results.
Source: Ecology - nature.com