in

Future temperature extremes threaten land vertebrates

  • Fischer, E. M. & Knutti, R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat. Clim. Change 5, 560–564 (2015).

    Article 
    ADS 

    Google Scholar 

  • Meehl, G. A. & Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994–997 (2004).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Harris, R. M. et al. Biological responses to the press and pulse of climate trends and extreme events. Nat. Clim. Change 8, 579–587 (2018).

    Article 
    ADS 

    Google Scholar 

  • Till, A., Rypel, A. L., Bray, A. & Fey, S. B. Fish die-offs are concurrent with thermal extremes in north temperate lakes. Nat. Clim. Change 9, 637–641 (2019).

    Article 
    ADS 

    Google Scholar 

  • Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312 (2019).

    Article 
    ADS 

    Google Scholar 

  • Vasseur, D. A. et al. Increased temperature variation poses a greater risk to species than climate warming. Proc. R. Soc. B 281, 20132612 (2014).

    Article 

    Google Scholar 

  • Ma, G., Rudolf, V. H. & Ma, C. Extreme temperature events alter demographic rates, relative fitness, and community structure. Glob. Change Biol. 21, 1794–1808 (2015).

    Article 
    ADS 

    Google Scholar 

  • Vázquez, D. P., Gianoli, E., Morris, W. F. & Bozinovic, F. Ecological and evolutionary impacts of changing climatic variability. Biol. Rev. 92, 22–42 (2017).

    Article 

    Google Scholar 

  • Tewksbury, J. J., Huey, R. B. & Deutsch, C. A. Putting the heat on tropical animals. Science 320, 1296–1297 (2008).

    Article 
    CAS 

    Google Scholar 

  • Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–706 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Power, S. B. & Delage, F. P. Setting and smashing extreme temperature records over the coming century. Nat. Clim. Change 9, 529–534 (2019).

    Article 
    ADS 

    Google Scholar 

  • Fischer, E. M., Sippel, S. & Knutti, R. Increasing probability of record-shattering climate extremes. Nat. Clim. Change 11, 689–695 (2021).

    Article 
    ADS 

    Google Scholar 

  • Román-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl Acad. Sci. USA 117, 4211–4217 (2020).

    Article 
    ADS 

    Google Scholar 

  • Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • McKechnie, A. E. & Wolf, B. O. Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves. Biol. Lett. 6, 253–256 (2010).

    Article 

    Google Scholar 

  • Maxwell, S. L. et al. Conservation implications of ecological responses to extreme weather and climate events. Divers. Distrib. 25, 613–625 (2019).

    Article 

    Google Scholar 

  • Seneviratne, S. I. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) Ch. 11, 1571–1759 (Cambridge Univ. Press, 2021).

  • Mora, C. et al. Global risk of deadly heat. Nat. Clim. Change 7, 501–506 (2017).

    Article 
    ADS 

    Google Scholar 

  • Battisti, D. S. & Naylor, R. L. Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323, 240–244 (2009).

    Article 
    CAS 

    Google Scholar 

  • Warren, R., Price, J., Graham, E., Forstenhaeusler, N. & VanDerWal, J. The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5°C rather than 2°C. Science 360, 791–795 (2018).

    Article 
    CAS 

    Google Scholar 

  • Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ma, G., Hoffmann, A. A. & Ma, C.-S. Daily temperature extremes play an important role in predicting thermal effects. J. Exp. Biol. 218, 2289–2296 (2015).

    Google Scholar 

  • Paaijmans, K. P. et al. Temperature variation makes ectotherms more sensitive to climate change. Glob. Change Biol. 19, 2373–2380 (2013).

    Article 
    ADS 

    Google Scholar 

  • Bütikofer, L. et al. The problem of scale in predicting biological responses to climate. Glob. Change Biol. 26, 6657–6666 (2020).

    Article 
    ADS 

    Google Scholar 

  • Seneviratne, S. I., Donat, M. G., Pitman, A. J., Knutti, R. & Wilby, R. L. Allowable CO2 emissions based on regional and impact-related climate targets. Nature 529, 477–483 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Buckley, L. B. & Huey, R. B. Temperature extremes: geographic patterns, recent changes, and implications for organismal vulnerabilities. Glob. Change Biol. 22, 3829–3842 (2016).

    Article 
    ADS 

    Google Scholar 

  • Garcia, R. A., Cabeza, M., Rahbek, C. & Araújo, M. B. Multiple dimensions of climate change and their implications for biodiversity. Science 344, 1247579 (2014).

    Article 

    Google Scholar 

  • Vogel, M. M. et al. Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks. Geophys. Res. Lett. 44, 1511–1519 (2017).

    Article 
    ADS 

    Google Scholar 

  • Tamarin-Brodsky, T., Hodges, K., Hoskins, B. J. & Shepherd, T. G. Changes in Northern Hemisphere temperature variability shaped by regional warming patterns. Nat. Geosci. 13, 414–421 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Schär, C. et al. The role of increasing temperature variability in European summer heatwaves. Nature 427, 332–336 (2004).

    Article 
    ADS 

    Google Scholar 

  • Pinsky, M. L., Eikeset, A. M., McCauley, D. J., Payne, J. L. & Sunday, J. M. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature 569, 108–111 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Perkins, S. E. & Alexander, L. V. On the measurement of heat waves. J. Clim. 26, 4500–4517 (2013).

    Article 
    ADS 

    Google Scholar 

  • Sunday, J. et al. Thermal tolerance patterns across latitude and elevation. Philos. Trans. R. Soc. B 374, 20190036 (2019).

    Article 

    Google Scholar 

  • Hoffmann, A. A. Physiological climatic limits in Drosophila: patterns and implications. J. Exp. Biol. 213, 870–880 (2010).

    Article 
    CAS 

    Google Scholar 

  • Buckley, L. B. & Huey, R. B. How extreme temperatures impact organisms and the evolution of their thermal tolerance. Integr. Comp. Biol. 56, 98–109 (2016).

    Article 

    Google Scholar 

  • Cohen, J. M., Fink, D. & Zuckerberg, B. Avian responses to extreme weather across functional traits and temporal scales. Glob. Change Biol. 26, 4240–4250 (2020).

    Article 
    ADS 

    Google Scholar 

  • Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP8.5 tracks cumulative CO2 emissions. Proc. Natl Acad. Sci. USA 117, 19656–19657 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jentsch, A., Kreyling, J. & Beierkuhnlein, C. A new generation of climate-change experiments: events, not trends. Front. Ecol. Environ. 5, 365–374 (2007).

    Article 

    Google Scholar 

  • Riddell, E. A. et al. Exposure to climate change drives stability or collapse of desert mammal and bird communities. Science 371, 633–636 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Welbergen, J. A., Klose, S. M., Markus, N. & Eby, P. Climate change and the effects of temperature extremes on Australian flying-foxes. Proc. R. Soc. B 275, 419–425 (2008).

    Article 

    Google Scholar 

  • McKechnie, A. E., Rushworth, I. A., Myburgh, F. & Cunningham, S. J. Mortality among birds and bats during an extreme heat event in eastern South Africa. Austral Ecol. 46, 687–691 (2021).

    Article 

    Google Scholar 

  • Thompson, R. M., Beardall, J., Beringer, J., Grace, M. & Sardina, P. Means and extremes: building variability into community-level climate change experiments. Ecol. Lett. 16, 799–806 (2013).

    Article 

    Google Scholar 

  • Perez, T. M., Stroud, J. T. & Feeley, K. J. Thermal trouble in the tropics. Science 351, 1392–1393 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Huey, R. B. et al. Why tropical forest lizards are vulnerable to climate warming. Proc. R. Soc. B 276, 1939–1948 (2009).

    Article 

    Google Scholar 

  • Kingsolver, J. G., Diamond, S. E. & Buckley, L. B. Heat stress and the fitness consequences of climate change for terrestrial ectotherms. Funct. Ecol. 27, 1415–1423 (2013).

    Article 

    Google Scholar 

  • R. Kearney, M. Activity restriction and the mechanistic basis for extinctions under climate warming. Ecol. Lett. 16, 1470–1479 (2013).

    Article 

    Google Scholar 

  • Rezende, E. L., Bozinovic, F., Szilágyi, A. & Santos, M. Predicting temperature mortality and selection in natural Drosophila populations. Science 369, 1242–1245 (2020).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. A global synthesis of animal phenological responses to climate change. Nat. Clim. Change 8, 224–228 (2018).

    Article 
    ADS 

    Google Scholar 

  • Levy, O., Dayan, T., Porter, W. P. & Kronfeld-Schor, N. Time and ecological resilience: can diurnal animals compensate for climate change by shifting to nocturnal activity? Ecol. Monogr. 89, e01334 (2019).

    Article 

    Google Scholar 

  • Faurby, S. & Araújo, M. B. Anthropogenic range contractions bias species climate change forecasts. Nat. Clim. Change 8, 252–256 (2018).

    Article 
    ADS 

    Google Scholar 

  • Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl Acad. Sci. USA 111, 5610–5615 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Scheffers, B. R., Edwards, D. P., Diesmos, A., Williams, S. E. & Evans, T. A. Microhabitats reduce animal’s exposure to climate extremes. Glob. Change Biol. 20, 495–503 (2014).

    Article 
    ADS 

    Google Scholar 

  • Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. B 367, 1665–1679 (2012).

    Article 

    Google Scholar 

  • Kearney, M., Shine, R. & Porter, W. P. The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming. Proc. Natl Acad. Sci. USA 106, 3835–3840 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Morley, S. A., Peck, L. S., Sunday, J. M., Heiser, S. & Bates, A. E. Physiological acclimation and persistence of ectothermic species under extreme heat events. Glob. Ecol. Biogeogr. 28, 1018–1037 (2019).

    Article 

    Google Scholar 

  • Cahill, A. E. et al. How does climate change cause extinction? Proc. R. Soc. B 280, 20121890 (2013).

    Article 

    Google Scholar 

  • Lewis, F. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 147–1926 (Cambridge Univ. Press, 2021).

  • Thakur, M. P., Bakker, E. S., Veen, G. C. & Harvey, J. A. Climate extremes, rewilding, and the role of microhabitats. One Earth 2, 506–509 (2020).

    Article 
    ADS 

    Google Scholar 

  • Albright, T. P. et al. Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration. Proc. Natl Acad. Sci. USA 114, 2283–2288 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Thrasher, B. et al. NASA Global daily downscaled projections, CMIP6. Sci. Data 9, 262 (2022).

    Article 

    Google Scholar 

  • Thrasher, B., Maurer, E. P., McKellar, C. & Duffy, P. B. Bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrol. Earth Syst. Sci. 16, 3309–3314 (2012).

    Article 
    ADS 

    Google Scholar 

  • Jin, Z. et al. Do maize models capture the impacts of heat and drought stresses on yield? Using algorithm ensembles to identify successful approaches. Glob. Change Biol. 22, 3112–3126 (2016).

    Article 
    ADS 

    Google Scholar 

  • Zhang, L., Yang, B., Li, S., Hou, Y. & Huang, D. Potential rice exposure to heat stress along the Yangtze River in China under RCP8.5 scenario. Agric. Forest Meteorol. 248, 185–196 (2018).

    Article 
    ADS 

    Google Scholar 

  • Al-Bakri, J. et al. Assessment of climate changes and their impact on barley yield in Mediterranean environment using NEX-GDDP downscaled GCMs and DSSAT. Earth Syst. Environ. 5, 751–766 (2021).

  • Semakula, H. M. et al. Prediction of future malaria hotspots under climate change in sub-Saharan Africa. Clim. Change 143, 415–428 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Iwamura, T., Guzman-Holst, A. & Murray, K. A. Accelerating invasion potential of disease vector Aedes aegypti under climate change. Nat. Commun. 11, 2130 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jones, A. E. et al. Bluetongue risk under future climates. Nat. Clim. Change 9, 153–157 (2019).

    Article 
    ADS 

    Google Scholar 

  • Obradovich, N. & Fowler, J. H. Climate change may alter human physical activity patterns. Nat. Hum. Behav. 1, 0097 (2017).

    Article 

    Google Scholar 

  • Obradovich, N., Migliorini, R., Mednick, S. C. & Fowler, J. H. Nighttime temperature and human sleep loss in a changing climate. Sci. Adv. 3, e1601555 (2017).

    Article 
    ADS 

    Google Scholar 

  • Meehl, G. A. et al. Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Sci. Adv. 6, eaba1981 (2020).

    Article 
    ADS 

    Google Scholar 

  • Hausfather, Z., Marvel, K., Schmidt, G. A., Nielsen-Gammon, J. W. & Zelinka, M. Climate simulations: recognize the ‘hot model’ problem. Nature 605, 26–29 (2022).

  • O’Neill, B. C. et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

    Article 
    ADS 

    Google Scholar 

  • IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).

  • IUCN Red List of Threatened Species Version 2017, 3 (IUCN, 2017).

  • Roll, U. et al. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat. Ecol. Evol. 1, 1677 (2017).

    Article 

    Google Scholar 

  • Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl Acad. Sci. USA 104, 13384–13389 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Maclean, I. M. Predicting future climate at high spatial and temporal resolution. Glob. Change Biol. 26, 1003–1011 (2020).

    Article 
    ADS 

    Google Scholar 

  • Warren, R. et al. Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nat. Clim. Change 3, 678–682 (2013).

    Article 
    ADS 

    Google Scholar 

  • Jiguet, F. et al. Thermal range predicts bird population resilience to extreme high temperatures. Ecol. Lett. 9, 1321–1330 (2006).

    Article 

    Google Scholar 

  • Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).

    Article 
    ADS 

    Google Scholar 

  • Laufkötter, C., Zscheischler, J. & Frölicher, T. L. High-impact marine heatwaves attributable to human-induced global warming. Science 369, 1621–1625 (2020).

    Article 
    ADS 

    Google Scholar 

  • Coumou, D. & Rahmstorf, S. A decade of weather extremes. Nat. Clim. Change 2, 491–496 (2012).

    Article 
    ADS 

    Google Scholar 

  • Oliver, E. C. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).

    Article 
    ADS 

    Google Scholar 

  • Field, C. B., Barros, V., Stocker, T. F. & Dahe, Q. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2012).

  • Woolway, R. I. et al. Lake heatwaves under climate change. Nature 589, 402–407 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Gruber, N., Boyd, P. W., Frölicher, T. L. & Vogt, M. Biogeochemical extremes and compound events in the ocean. Nature 600, 395–407 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Cahill, A. E. et al. Causes of warm-edge range limits: systematic review, proximate factors and implications for climate change. J. Biogeogr. 41, 429–442 (2014).

    Article 

    Google Scholar 

  • Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLoS Biol. 14, e2001104 (2016).

    Article 

    Google Scholar 

  • Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).

    Article 

    Google Scholar 

  • Bennett, J. M. et al. The evolution of critical thermal limits of life on Earth. Nat. Commun. 12, 1198 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Sunday, J. M., Bates, A. E. & Dulvy, N. K. Thermal tolerance and the global redistribution of animals. Nat. Clim. Change 2, 686–690 (2012).

    Article 
    ADS 

    Google Scholar 

  • Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob. Ecol. Biogeogr. 12, 361–371 (2003).

    Article 

    Google Scholar 

  • Louthan, A. M., Doak, D. F. & Angert, A. L. Where and when do species interactions set range limits? Trends Ecol. Evol. 30, 780–792 (2015).

    Article 

    Google Scholar 

  • Barbarossa, V. et al. Threats of global warming to the world’s freshwater fishes. Nat. Commun. 12, 1701 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Clusella-Trullas, S., Blackburn, T. M. & Chown, S. L. Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. Am. Nat. 177, 738–751 (2011).

    Article 

    Google Scholar 

  • Qu, Y.-F. & Wiens, J. J. Higher temperatures lower rates of physiological and niche evolution. Proc. R. Soc. B 287, 20200823 (2020).

    Article 

    Google Scholar 

  • Pither, J. Climate tolerance and interspecific variation in geographic range size. Proc. R. Soc. Lond. B 270, 475–481 (2003).

    Article 

    Google Scholar 

  • Bennett, J. M. et al. GlobTherm, a global database on thermal tolerances for aquatic and terrestrial organisms. Sci. Data 5, 180022 (2018).

    Article 

    Google Scholar 

  • R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019); http://www.R-project.org/

  • Chen, H., Sun, J., Lin, W. & Xu, H. Comparison of CMIP6 and CMIP5 models in simulating climate extremes. Sci. Bull. 65, 1415–1418 (2020).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Half a century of rising extinction risk of coral reef sharks and rays

    Preparing to be prepared