in

Gene loss and symbiont switching during adaptation to the deep sea in a globally distributed symbiosis

  • Cavanaugh CM, McKiness ZP, Newton ILG, Stewart FJ. Marine chemosynthetic symbioses. Prokaryotes. 2006;1:475–507.

    Article 

    Google Scholar 

  • Beinart RA, Luo C, Konstantinidis KT, Stewart FJ, Girguis PR. The bacterial symbionts of closely related hydrothermal vent snails with distinct geochemical habitats show broad similarity in chemoautotrophic gene content. Front Microbiol. 2019;10:1818.

    Article 

    Google Scholar 

  • Robidart JC, Bench SR, Feldman RA, Novoradovsky A, Podell SB, Gaasterland T, et al. Metabolic versatility of the Riftia pachyptila endosymbiont revealed through metagenomics. Environ Microbiol. 2008;10:727–37.

    Article 
    CAS 

    Google Scholar 

  • Ponnudurai R, Sayavedra L, Kleiner M, Heiden SE, Thürmer A, Felbeck H, et al. Genome sequence of the sulfur-oxidizing Bathymodiolus thermophilus gill endosymbiont. Stand Genom Sci. 2017;12:50.

    Article 

    Google Scholar 

  • Duperron S, Bergin C, Zielinski F, Blazejak A, Pernthaler A, McKiness ZP, et al. A dual symbiosis shared by two mussel species, Bathymodiolus azoricus and Bathymodiolus puteoserpentis (Bivalvia: Mytilidae), from hydrothermal vents along the northern Mid-Atlantic Ridge. Environ Microbiol. 2006;8:1441–7.

    Article 
    CAS 

    Google Scholar 

  • Dubilier N, Bergin C, Lott C. Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol. 2008;6:725–40.

    Article 
    CAS 

    Google Scholar 

  • Sogin EM, Leisch N, Dubilier N. Chemosynthetic symbioses. Curr Biol. 2020;30:R1137–R1142.

    Article 
    CAS 

    Google Scholar 

  • Roeselers G, Newton ILG. On the evolutionary ecology of symbioses between chemosynthetic bacteria and bivalves. Appl Microbiol Biotechnol. 2012;94:1–10.

    Article 
    CAS 

    Google Scholar 

  • Moran NA. Symbiosis as an adaptive process and source of phenotypic complexity. Proc Natl Acad Sci USA. 2007;104 Suppl 1:8627–33.

    Article 
    CAS 

    Google Scholar 

  • McMullen JG, Peterson BF, Forst S, Blair HG, Patricia Stock S. Fitness costs of symbiont switching using entomopathogenic nematodes as a model. BMC Evol Biol. 2017;17. https://doi.org/10.1186/s12862-017-0939-6.

  • Taylor JD, Glover E. Biology, evolution and generic review of the chemosymbiotic bivalve family Lucinidae. London, UK: Ray Society; 2021.

  • Osvatic JT, Wilkins LGE, Leibrecht L, Leray M, Zauner S, Polzin J, et al. Global biogeography of chemosynthetic symbionts reveals both localized and globally distributed symbiont groups. Proc Natl Acad Sci USA. 2021;118. https://doi.org/10.1073/pnas.2104378118.

  • Petersen JM, Kemper A, Gruber-Vodicka H, Cardini U, van der Geest M, Kleiner M, et al. Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation. Nat Microbiol. 2016;2:16195.

    Article 
    CAS 

    Google Scholar 

  • Lim SJ, Davis B, Gill D, Swetenburg J, Anderson LC, Engel AS, et al. Gill microbiome structure and function in the chemosymbiotic coastal lucinid Stewartia floridana. FEMS Microbiol Ecol. 2021;97. https://doi.org/10.1093/femsec/fiab042.

  • Lim SJ, Davis BG, Gill DE, Walton J, Nachman E, Engel AS, et al. Taxonomic and functional heterogeneity of the gill microbiome in a symbiotic coastal mangrove lucinid species. ISME J. 2019;13:902–20.

    Article 
    CAS 

    Google Scholar 

  • Gros O, Liberge M, Felbeck H. Interspecific infection of aposymbiotic juveniles of Codakia orbicularis by various tropical lucinid gill-endosymbionts. Mar Biol. 2003;142:57–66.

    Article 

    Google Scholar 

  • Gros O, Elisabeth NH, Gustave SDD, Caro A, Dubilier N. Plasticity of symbiont acquisition throughout the life cycle of the shallow-water tropical lucinid Codakia orbiculata (Mollusca: Bivalvia). Environ Microbiol. 2012;14:1584–95.

    Article 
    CAS 

    Google Scholar 

  • Gros O, Frenkiel L, Mouëza M. Embryonic, larval, and post-larval development in the symbiotic clam Codakia orbicularis (Bivalvia: Lucinidae). Invertebr Biol. 1997;116:86–101.

    Article 

    Google Scholar 

  • König S, Gros O, Heiden SE, Hinzke T, Thürmer A, Poehlein A, et al. Nitrogen fixation in a chemoautotrophic lucinid symbiosis. Nat Microbiol. 2016;2:16193.

    Article 

    Google Scholar 

  • Fiore CL, Jarett JK, Olson ND, Lesser MP. Nitrogen fixation and nitrogen transformations in marine symbioses. Trends Microbiol. 2010;18:455–63.

    Article 
    CAS 

    Google Scholar 

  • Cardini U, Bednarz VN, Foster RA, Wild C. Benthic N2 fixation in coral reefs and the potential effects of human-induced environmental change. Ecol Evol. 2014;4:1706–27.

    Article 

    Google Scholar 

  • Glover EA, Taylor JD. Lucinidae of the Philippines: highest known diversity and ubiquity of chemosymbiotic bivalves from intertidal to bathyal depths (Mollusca: Bivalvia). mém Mus Natl Hist Nat. 2016;208:65–234.

    Google Scholar 

  • Taylor JD, Glover EA, Williams ST. Diversification of chemosymbiotic bivalves: origins and relationships of deeper water Lucinidae. Biol J Linn Soc Lond. 2014;111:401–20.

    Article 

    Google Scholar 

  • von Cosel R. Taxonomy of tropical West African bivalves. VI. Remarks on Lucinidae (Mollusca, Bivalvia), with description of six new genera and eight new species. Zoosystema. 2006;28:805.

    Google Scholar 

  • Glover EA, Taylor JD, Rowden AA. Bathyaustriella thionipta, a new lucinid bivalve from a hydrothermal vent on the Kermadec Ridge, New Zealand and its relationship to shallow-water taxa (Bivalvia: Lucinidae). J Mollusca Stud. 2004;70:283–95.

    Article 

    Google Scholar 

  • Paulus E Shedding light on deep-sea biodiversity—a highly vulnerable habitat in the face of anthropogenic change. Front Mar Sci. 2021;8. https://doi.org/10.3389/fmars.2021.667048.

  • Brown A, Thatje S. Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: physiological contributions to adaptation of life at depth. Biol Rev Camb Philos Soc. 2014;89:406–26.

    Article 

    Google Scholar 

  • Smith CR, De Leo FC, Bernardino AF, Sweetman AK, Arbizu PM. Abyssal food limitation, ecosystem structure and climate change. Trends Ecol Evol. 2008;23:518–28.

    Article 

    Google Scholar 

  • Gage JD, Tyler PA. Deep-sea biology: a natural history of organisms at the deep-sea floor. Cambridge, UK: Cambridge University Press; 1991.

  • Iken K, Brey T, Wand U, Voigt J, Junghans P. Food web structure of the benthic community at the Porcupine Abyssal Plain (NE Atlantic): a stable isotope analysis. Prog Oceanogr. 2001;50:383–405.

    Article 

    Google Scholar 

  • von Cosel R, Bouchet P. Tropical deep-water lucinids (Mollusca: Bivalvia) from the Indo-Pacific: essentially unknown, but diverse and occasionally gigantic. mém Mus Natl Hist Nat. 2008;196:115–213.

    Google Scholar 

  • Stearns REC Scientific results of explorations by the US Fish Commission steamer Albatross. No. XVII. Descriptions of new West American land, fresh-water, and marine shells, with notes and comments. Proceedings of the United States National Museum. 1890. https://repository.si.edu/bitstream/handle/10088/13174/1/USNMP-13_813_1890.pdf.

  • Taylor JD, Glover EA. The lucinid bivalve genus Cardiolucina (Mollusca, Bivalvia, Lucinidae): systematics, anatomy and relationships. Bull Br Mus Nat Hist Zoo. 1997;63:93–122.

    Google Scholar 

  • Coan EV, Valentich-Scott P, Sadeghian PS. Bivalve seashells of tropical West America: marine bivalve mollusks from Baja California to Northern Peru. Santa Barbara, USA: Museum of Natural History; 2012.

  • von Cosel R, Gofas S. Marine bivalves of tropical West Africa: from Rio de Oro to southern Angola. Marseille, France: Muséum national d’Histoire naturelle, Paris; 2019. p 1104.

  • Atkinson L, Sink K. Field guide to the offshore marine invertebrates of South Africa. 2018. https://doi.org/10.15493/SAEON.PUB.10000001.

  • Montagu G. Testacea Britannica, or natural history of British shells. London, UK: JS Hollis; 1803.

  • Taylor J, Glover E. New lucinid bivalves from shallow and deeper water of the Indian and West Pacific Oceans (Mollusca, Bivalvia, Lucinidae). ZooKeys. 2013;326:69–90.

    Article 

    Google Scholar 

  • Apprill A, McNally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Micro Ecol. 2015;75:129–37.

    Article 

    Google Scholar 

  • Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.

    Article 
    CAS 

    Google Scholar 

  • Pjevac P, Hausmann B, Schwarz J, Kohl G, Herbold CW, Loy A, et al. An economical and flexible dual barcoding, two-step PCR approach for highly multiplexed amplicon sequencing. Front Microbiol. 2021;12:669776.

    Article 

    Google Scholar 

  • McLaren MR, Callahan BJ. Silva 138.1 prokaryotic SSU taxonomic training data formatted for DADA2 [Data set]. Zenodo. https://doi.org/10.5281/zenodo.4587955.

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.

    Article 
    CAS 

    Google Scholar 

  • Andersen KS, Kirkegaard RH, Karst SM, Albertsen M. ampvis2: an R package to analyse and visualise 16S rRNA amplicon data. 2018. https://www.biorxiv.org/content/10.1101/299537v1.

  • Bushnell B. BBMap: a fast, accurate, splice-aware aligner. Berkeley, CA, USA: Lawrence Berkeley National Lab. (LBNL); 2014.

  • Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 2017;27:824–34.

    Article 
    CAS 

    Google Scholar 

  • Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A, Lapidus A, et al. Assembling genomes and mini-metagenomes from highly chimeric reads. In: Research in Computational Molecular Biology. Springer Berlin Heidelberg; 2013. p. 158–70.

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.

    Article 

    Google Scholar 

  • Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3:e1319.

    Article 

    Google Scholar 

  • Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144–6.

    Article 
    CAS 

    Google Scholar 

  • Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359.

    Article 

    Google Scholar 

  • Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.

    Article 
    CAS 

    Google Scholar 

  • Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.

    Article 
    CAS 

    Google Scholar 

  • Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2019. https://doi.org/10.1093/bioinformatics/btz848.

  • Parks DH, Chuvochina M, Chaumeil P-A, Rinke C, Mussig AJ, Hugenholtz P. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol. 2020;38:1079–86.

    Article 
    CAS 

    Google Scholar 

  • Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.

    Article 
    CAS 

    Google Scholar 

  • Matsen FA, Kodner RB, Armbrust EV. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinform. 2010;11:538.

    Article 

    Google Scholar 

  • Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.

    Article 

    Google Scholar 

  • Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:119.

    Article 

    Google Scholar 

  • Price MN, Dehal PS, Arkin AP. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.

    Article 

    Google Scholar 

  • Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:e1002195.

    Article 
    CAS 

    Google Scholar 

  • Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 2016;17:132.

    Article 

    Google Scholar 

  • Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:W232–5.

    Article 
    CAS 

    Google Scholar 

  • Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49:W293–W296.

    Article 
    CAS 

    Google Scholar 

  • Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K, Kyrpides NC, et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res. 2015;43:6761–71.

    Article 
    CAS 

    Google Scholar 

  • Qin Q-L, Xie B-B, Zhang X-Y, Chen X-L, Zhou B-C, Zhou J, et al. A proposed genus boundary for the prokaryotes based on genomic insights. J Bacteriol. 2014;196:2210–5.

    Article 

    Google Scholar 

  • Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:D309–D314.

    Article 
    CAS 

    Google Scholar 

  • Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol Biol Evol. 2017;34:2115–22.

    Article 
    CAS 

    Google Scholar 

  • Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep. 2015;5:8365.

    Article 

    Google Scholar 

  • Mahram A, Herbordt MC. NCBI BLASTP on high-performance reconfigurable computing systems. ACM Trans Reconfigurable Technol Syst. 2015;7:1–20.

    Article 

    Google Scholar 

  • Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 1997;13:555–6.

    CAS 

    Google Scholar 

  • Osvatic J, Wilkins L. Strength of selection scripts. FigShare. 2022;8. https://doi.org/10.6084/m9.figshare.20626746.v1.

  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol. 1990;56:1919–25.

    Article 
    CAS 

    Google Scholar 

  • Lan Y, Sun J, Chen C, Sun Y, Zhou Y, Yang Y, et al. Hologenome analysis reveals dual symbiosis in the deep-sea hydrothermal vent snail Gigantopelta aegis. Nat Commun. 2021;12:1165.

    Article 
    CAS 

    Google Scholar 

  • Leray M, Wilkins LGE, Apprill A, Bik HM, Clever F, Connolly SR, et al. Natural experiments and long-term monitoring are critical to understand and predict marine host-microbe ecology and evolution. PLoS Biol. 2021;19:e3001322.

    Article 
    CAS 

    Google Scholar 

  • Petersen Jillian M, Yuen B, Alexandre G. The symbiotic ‘all-rounders’: partnerships between marine animals and chemosynthetic nitrogen-fixing bacteria. Appl Environ Microbiol 2020;87:e02129–20.

  • Johnson KS, Childress JJ, Hessler RR, Sakamoto-Arnold CM, Beehler CL. Chemical and biological interactions in the Rose Garden hydrothermal vent field, Galapagos spreading center. Deep Sea Res A. 1988;35:1723–44.

    Article 

    Google Scholar 

  • Kennicutt ME II, Brooks JM, Burke RA Jr. Hydrocarbon seepage, gas hydrates, and authigenic carbonate in the northwestern Gulf of Mexico. Offshore Technology Conference; 1989. https://doi.org/10.4043/5952-ms.

  • Lilley MD, Butterfield DA, Olson EJ, Lupton JE, Macko SA, McDuff RE. Anomalous CH4 and NH4+ concentrations at an unsedimented mid-ocean-ridge hydrothermal system. Nature. 1993;364:45–47.

    Article 
    CAS 

    Google Scholar 

  • Von Damm KL, Edmond JM, Measures CI, Grant B. Chemistry of submarine hydrothermal solutions at Guaymas Basin, Gulf of California. Geochim Cosmochim Acta. 1985;49:2221–37.

    Article 

    Google Scholar 

  • Lee RW, Thuesen EV, Childress JJ. Ammonium and free amino acids as nitrogen sources for the chemoautotrophic symbiosis Solemya reidi Bernard (Bivalvia: Protobranchia). J Exp Mar Bio Ecol. 1992;158:75–91.

    Article 
    CAS 

    Google Scholar 

  • Sanders JG, Beinart RA, Stewart FJ, Delong EF, Girguis PR. Metatranscriptomics reveal differences in in situ energy and nitrogen metabolism among hydrothermal vent snail symbionts. ISME J. 2013;7:1556–67.

    Article 
    CAS 

    Google Scholar 

  • Touchette BW, Burkholder JM. Review of nitrogen and phosphorus metabolism in seagrasses. J Exp Mar Bio Ecol. 2000;250:133–67.

    Article 
    CAS 

    Google Scholar 

  • Fourqurean JW, Zieman JC, Powell GVN. Relationships between porewater nutrients and seagrasses in a subtropical carbonate environment. Mar Biol. 1992;114:57–65.

    Article 
    CAS 

    Google Scholar 

  • Williams SL. Experimental studies of Caribbean seagrass bed development. Ecol Monogr. 1990;60:449–69.

    Article 

    Google Scholar 

  • Herbert RA. Nitrogen cycling in coastal marine ecosystems. FEMS Microbiol Rev. 1999;23:563–90.

    Article 
    CAS 

    Google Scholar 

  • Risgaard-Petersen N, Dalsgaard T, Rysgaard S, Christensen PB, Borum J, McGlathery K, et al. Nitrogen balance of a temperate eelgrass Zostera marina bed. Mar Ecol Prog Ser. 1998;174:281–91.

    Article 
    CAS 

    Google Scholar 

  • Bristow LA, Dalsgaard T, Tiano L, Mills DB, Bertagnolli AD, Wright JJ, et al. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters. Proc Natl Acad Sci USA. 2016;113:10601–6.

    Article 
    CAS 

    Google Scholar 

  • Karthäuser C, Ahmerkamp S, Marchant HK, Bristow LA, Hauss H, Iversen MH, et al. Small sinking particles control anammox rates in the Peruvian oxygen minimum zone. Nat Commun. 2021;12:3235.

    Article 

    Google Scholar 

  • Kuypers MMM, Lavik G, Woebken D, Schmid M, Fuchs BM, Amann R, et al. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proc Natl Acad Sci USA. 2005;102:6478–83.

    Article 
    CAS 

    Google Scholar 

  • Johnson KS, Beehler CL, Sakamoto-Arnold CM, Childress JJ. In situ measurements of chemical distributions in a deep-sea hydrothermal vent field. Science. 1986;231:1139–41.

    Article 
    CAS 

    Google Scholar 

  • Childress JJ, Girguis PR. The metabolic demands of endosymbiotic chemoautotrophic metabolism on host physiological capacities. J Exp Biol. 2011;214:312–25.

    Article 
    CAS 

    Google Scholar 

  • Hentschel U, Hand S, Felbeck H. The contribution of nitrate respiration to the energy budget of the symbiont-containing clam Lucinoma aequizonata: a calorimetric study. J Exp Biol. 1996;199:427–33.

    Article 
    CAS 

    Google Scholar 

  • Breusing C, Mitchell J, Delaney J, Sylva SP, Seewald JS, Girguis PR, et al. Physiological dynamics of chemosynthetic symbionts in hydrothermal vent snails. ISME J. 2020;14:2568–79.

    Article 
    CAS 

    Google Scholar 

  • Amorim K, Loick-Wilde N, Yuen B, Osvatic JT, Wäge-Recchioni J, Hausmann B, et al. Chemoautotrophy, symbiosis and sedimented diatoms support high biomass of benthic molluscs in the Namibian shelf. Sci Rep. 2022;12:9731.

    Article 
    CAS 

    Google Scholar 

  • Breusing C, Johnson SB, Tunnicliffe V, Clague DA, Vrijenhoek RC, Beinart RA. Allopatric and sympatric drivers of speciation in Alviniconcha hydrothermal vent snails. Mol Biol Evol. 2020;37:3469–84.

    Article 
    CAS 

    Google Scholar 

  • Giovannoni SJ, Cameron Thrash J, Temperton B. Implications of streamlining theory for microbial ecology. ISME J. 2014;8:1553–65.

    Article 

    Google Scholar 

  • Brissac T, Gros O, Merçot H. Lack of endosymbiont release by two Lucinidae (Bivalvia) of the genus Codakia: consequences for symbiotic relationships. FEMS Microbiol Ecol. 2009;67:261–7.

    Article 
    CAS 

    Google Scholar 

  • Werner GDA, Cornelissen JHC, Cornwell WK, Soudzilovskaia NA, Kattge J, West SA, et al. Symbiont switching and alternative resource acquisition strategies drive mutualism breakdown. Proc Natl Acad Sci USA. 2018;115:5229–34.

    Article 
    CAS 

    Google Scholar 

  • Sudakaran S, Kost C, Kaltenpoth M. Symbiont acquisition and replacement as a source of ecological innovation. Trends Microbiol. 2017;25:375–90.

    Article 
    CAS 

    Google Scholar 

  • Li Y, Liles MR, Halanych KM. Endosymbiont genomes yield clues of tubeworm success. ISME J. 2018;12:2785–95.

    Article 
    CAS 

    Google Scholar 

  • Moran NA, Yun Y. Experimental replacement of an obligate insect symbiont. Proc Natl Acad Sci USA. 2015;112:2093–6.

    Article 
    CAS 

    Google Scholar 

  • Sørensen MES, Wood AJ, Cameron DD, Brockhurst MA. Rapid compensatory evolution can rescue low fitness symbioses following partner switching. Curr Biol. 2021;31:3721–3728.e4.

    Article 

    Google Scholar 

  • Taylor JD, Glover EA, Smith L, Ikebe C, Williams ST. New molecular phylogeny of Lucinidae: increased taxon base with focus on tropical Western Atlantic species (Mollusca: Bivalvia). Zootaxa. 2016;4196:zootaxa.4196.3.2.

    Article 

    Google Scholar 

  • Osvatic J. Fig1 gtdb tree and alignment. figshare. 2021. https://doi.org/10.6084/m9.figshare.16837216.v1.

  • Osvatic J. Figure 2: GTDB alignment and phylogeny. 2021. https://doi.org/10.6084/m9.figshare.16837237.


  • Source: Ecology - nature.com

    Study: Extreme heat is changing habits of daily life

    Computers that power self-driving cars could be a huge driver of global carbon emissions