in

Global patterns of climate change impacts on desert bird communities

  • Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bowler, D. E. et al. Cross-realm assessment of climate change impacts on species’ abundance trends. Nat. Ecol. Evol. 1, 1–7 (2017).

    Article 

    Google Scholar 

  • Barrett, J. E. et al. Persistent effects of a discrete warming event on a polar desert ecosystem. Glob. Change Biol. 14, 2249–2261 (2008).

    Article 
    ADS 

    Google Scholar 

  • Gooseff, M. N. et al. Decadal ecosystem response to an anomalous melt season in a polar desert in Antarctica. Nat. Ecol. Evol. 1, 1334–1338 (2017).

    Article 

    Google Scholar 

  • Iknayan, K. J. & Beissinger, S. R. In transition: Avian biogeographic responses to a century of climate change across desert biomes. Glob. Change Biol. 26, 3268–3284 (2020).

    Article 
    ADS 

    Google Scholar 

  • Conradie, S. R., Woodborne, S. M., Cunningham, S. J. & McKechnie, A. E. Chronic, sublethal effects of high temperatures will cause severe declines in southern African arid-zone birds during the 21st century. Proc. Natl Acad. Sci. USA 116, 14065–14070 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • du Plessis, K. L., Martin, R. O., Hockey, P. A. R., Cunningham, S. J. & Ridley, A. R. The costs of keeping cool in a warming world: implications of high temperatures for foraging, thermoregulation and body condition of an arid-zone bird. Glob. Change Biol. 18, 3063–3070 (2012).

    Article 
    ADS 

    Google Scholar 

  • Ward, D. The Biology of Deserts (OUP Oxford, 2016).

  • Reid, V. W. et al. Millennium Ecosystem Assessment, 2005. In Ecosystems and Human Well-being: Synthesis (Island Press, 2005).

  • Zhou, L., Chen, H. & Dai, Y. Stronger warming amplification over drier ecoregions observed since 1979. Environ. Res. Lett. 10, 064012 (2015).

    Article 
    ADS 

    Google Scholar 

  • Hoegh-Guldberg, O. et al. 2018: Impacts of 1.5ºC Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (eds Masson-Delmotte, V. et al.) Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 175-312, https://doi.org/10.1017/9781009157940.005.

  • Albright, T. P. et al. Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration. Proc. Natl Acad. Sci. USA 114, 2283–2288 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Friedrich, T., Timmermann, A., Tigchelaar, M., Timm, O. E. & Ganopolski, A. Nonlinear climate sensitivity and its implications for future greenhouse warming. Sci. Adv. 2, e1501923 (2016).

    Article 
    ADS 

    Google Scholar 

  • Kearney, M. R. & Porter, W. P. NicheMapR—an R package for biophysical modelling: the microclimate model. Ecography 40, 664–674 (2017).

    Article 

    Google Scholar 

  • Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367, 1665–1679 (2012).

    Article 

    Google Scholar 

  • Kearney, M. & Porter, W. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12, 334–350 (2009).

    Article 

    Google Scholar 

  • Bicudo, J. E. P., Buttemer, W. A., Chappell, M. A., Pearson, J. T. & Bech, C. Ecological and Environmental Physiology of Birds Vol. 2 (Oxford University Press, 2010).

  • McKechnie, A. E. & Wolf, B. O. Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves. Biol. Lett. 6, 253–256 (2010).

    Article 

    Google Scholar 

  • Riddell, E. A. et al. Exposure to climate change drives stability or collapse of desert mammal and bird communities. Science 371, 633–636 (2021).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Williams, J. B. & Tieleman, B. I. Physiological adaptation in desert birds. BioScience 55, 416–425 (2005).

    Article 

    Google Scholar 

  • Iknayan, K. J. & Beissinger, S. R. Collapse of a desert bird community over the past century driven by climate change. Proc. Natl Acad. Sci. USA 115, 8597–8602 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Albright, T. P. et al. Combined effects of heat waves and droughts on avian communities across the conterminous United States. Ecosphere 1, art12 (2010).

    Article 

    Google Scholar 

  • Cruz-McDonnell, K. K. & Wolf, B. O. Rapid warming and drought negatively impact population size and reproductive dynamics of an avian predator in the arid southwest. Glob. Change Biol. 22, 237–253 (2016).

    Article 
    ADS 

    Google Scholar 

  • Dawson, W. R. Temperature Regulation and Water Requirements of the Brown and Abert Towhees, Pipilo Fuscus and Pipilo Aberti.[With Plates.] (University of California Press, 1954).

  • Riddell, E. A., Iknayan, K. J., Wolf, B. O., Sinervo, B. & Beissinger, S. R. Cooling requirements fueled the collapse of a desert bird community from climate change. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.1908791116 (2019).

  • Wolf, B. Global warming and avian occupancy of hot deserts; a physiological and behavioral perspective. Rev. Chil. Hist. Nat. 73, 395–400 (2000).

    Article 

    Google Scholar 

  • Kier, G. et al. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl Acad. Sci. USA 106, 9322–9327 (2009).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ioffe, S. Improved consistent sampling, weighted Minhash and L1 sketching. In Proceedings of the 2010 IEEE International Conference on Data Mining 246–255 (IEEE Computer Society, 2010).

  • Losos, E., Hayes, J., Phillips, A., Wilcove, D. & Alkire, C. Taxpayer-subsidized resource extraction harms species. BioScience 45, 446–455 (1995).

    Article 

    Google Scholar 

  • Rodríguez-Estrella, R. Land use changes affect distributional patterns of desert birds in the Baja California peninsula, Mexico. Divers. Distrib. 13, 877–889 (2007).

    Article 

    Google Scholar 

  • Stralberg, D. et al. Climate-change refugia in boreal North America: what, where, and for how long? Front. Ecol. Environ. 18, 261–270 (2020).

    Article 

    Google Scholar 

  • Hinkel, J. et al. Sea-level rise scenarios and coastal risk management. Nat. Clim. Change 5, 188–190 (2015).

    Article 
    ADS 

    Google Scholar 

  • He, Q. & Silliman, B. R. Climate change, human impacts, and coastal ecosystems in the anthropocene. Curr. Biol. 29, R1021–R1035 (2019).

    Article 
    CAS 

    Google Scholar 

  • C. B. D. Zero Draft of the Post-2020 Global Biodiversity Framework CBD/WG2020/2/3. https://www.cbd.int/doc/c/efb0/1f84/a892b98d2982a829962b6371/wg2020-02-03-en.pdf Convention on Biology Diversity, Montreal, Canada (2020).

  • Jung, M. et al. A global map of terrestrial habitat types. Sci. Data 7, 256 (2020).

    Article 

    Google Scholar 

  • Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1 km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar 

  • Meigs, P. World distributions of arid and semi-arid homoclimates. In Review of Research on Arid Zone Hydrology (UNESCO, 1953).

  • Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science 339, 74–78 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci. Data 5, 170191 (2018).

    Article 

    Google Scholar 

  • Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).

    Article 
    ADS 

    Google Scholar 

  • Kearney, M. R. & Porter, W. P. NicheMapR – an R package for biophysical modelling: the microclimate model. Ecography 40, 664–674 (2017).

    Article 

    Google Scholar 

  • Pattinson, N. B. et al. Heat dissipation behaviour of birds in seasonally hot arid-zones: are there global patterns? J. Avian Biol. 51, e02350 (2020).

  • Smith, E. K., O’Neill, J., Gerson, A. R. & Wolf, B. O. Avian thermoregulation in the heat: resting metabolism, evaporative cooling and heat tolerance in Sonoran Desert doves and quail. J. Exp. Biol. 218, 3636–3646 (2015).

    Article 

    Google Scholar 

  • Smith, E. K., O’Neill, J. J., Gerson, A. R., McKechnie, A. E. & Wolf, B. O. Avian thermoregulation in the heat: resting metabolism, evaporative cooling and heat tolerance in Sonoran Desert songbirds. J. Exp. Biol. 220, 3290–3300 (2017).

    Google Scholar 

  • Kearney, M. NicheMapR: R implementation of Niche Mapper software for biophysical modelling. https://github.com/mrke/NicheMapR. (2020).

  • Cunningham, S. J., Martin, R. O. & Hockey, P. A. Can behaviour buffer the impacts of climate change on an arid-zone bird? Ostrich 86, 119–126 (2015).

    Article 

    Google Scholar 

  • Czenze, Z. J. et al. Regularly drinking desert birds have greater evaporative cooling capacity and higher heat tolerance limits than non-drinking species. Funct. Ecol. 34, 1589–1600 (2020).

    Article 

    Google Scholar 

  • Smit, B. et al. Avian thermoregulation in the heat: phylogenetic variation among avian orders in evaporative cooling capacity and heat tolerance. J. Exp. Biol. 221, jeb174870 (2018).

  • Worcester, S. E. The scaling of the size and stiffness of primary flight feathers. J. Zool. 239, 609–624 (1996).

    Article 

    Google Scholar 

  • Wang, X., Nudds, R. L., Palmer, C. & Dyke, G. J. Size scaling and stiffness of avian primary feathers: implications for the flight of Mesozoic birds. J. Evol. Biol. 25, 547–555 (2012).

    Article 
    CAS 

    Google Scholar 

  • McKechnie, A. E., Gerson, A. R. & Wolf, B. O. Thermoregulation in desert birds: scaling and phylogenetic variation in heat tolerance and evaporative cooling. J. Exp. Biol. 224, jeb229211 (2021).

  • Flint, L. E., Flint, A. L., Thorne, J. H. & Boynton, R. Fine-scale hydrologic modeling for regional landscape applications: the California Basin Characterization Model development and performance. Ecol. Process. 2, 25 (2013).

    Article 

    Google Scholar 

  • Handbook of the Birds of the World and BirdLife International. Handbook of the Birds of the World and BirdLife International digital checklist of the birds of the world. Version 5. http://datazone.birdlife.org/userfiles/file/Species/Taxonomy/HBW-BirdLife_Checklist_v5_Dec20.zip (2020).

  • Brooks, T. M. et al. Measuring terrestrial Area of Habitat (AOH) and its utility for the IUCN red list. Trends Ecol. Evol. 34, 977–986 (2019).

    Article 

    Google Scholar 

  • Pastore, M. Overlapping: a R package for estimating overlapping in empirical distributions. J. Open Source Softw. 3, 1023 (2018).

    Article 
    ADS 

    Google Scholar 

  • UNEP-WCMC and IUCN, Protected Planet: The World Database on Protected Areas (WDPA) [Online], June 2021, Cambridge, UK: UNEP-WCMC and IUCN www.protectedplanet.net (2021).

  • Butchart, S. H. M. et al. Shortfalls and solutions for meeting national and global conservation area targets. Conserv. Lett. 8, 329–337 (2015).

    Article 

    Google Scholar 

  • Dudley, N. Guidelines for Applying Protected Area Management Categories (ICUN, 2008).

  • Mangiafico, S. rcompanion: Functions to Support Extension Education Program Evaluation. https://CRAN.R-project.org/package=rcompanion. (2021).

  • Crawford, C. L., Estes, L. D., Searchinger, T. D. & Wilcove, D. S. Consequences of underexplored variation in biodiversity indices used for land-use prioritization. Ecol. Appl. 31, e02396 (2021).

    Article 

    Google Scholar 

  • Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

    Article 
    ADS 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).


  • Source: Ecology - nature.com

    Study: Extreme heat is changing habits of daily life

    Computers that power self-driving cars could be a huge driver of global carbon emissions