in

Global patterns of tree density are contingent upon local determinants in the world’s natural forests

  • Crowther, T. W. et al. Mapping tree density at a global scale. Nature 525, 201–205 (2015).

    Article 
    CAS 

    Google Scholar 

  • Asner, G. P. et al. A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia 168, 1147–1160 (2012).

    Article 

    Google Scholar 

  • Walker, A. P. et al. Predicting long‐term carbon sequestration in response to CO2 enrichment: How and why do current ecosystem models differ? Glob. Biogeochem. Cy. 29, 476–495 (2015).

    Article 
    CAS 

    Google Scholar 

  • Madrigal-González, J. et al. Climate reverses directionality in the richness–abundance relationship across the World’s main forest biomes. Nat. Commun. 11, 1–7 (2020).

    Article 

    Google Scholar 

  • Stephenson, N. L. Climatic control of vegetation distribution: the role of the water balance. Am. Nat. 135, 649–670 (1990).

    Article 

    Google Scholar 

  • Weiskittel, A. R., Maguire, D. A., Monserud, R. A. Development of a hybrid model for intensively managed Douglas-fir in the Pacific Northwest. In Forest Growth and Timber Quality, 49 (USDA, Portland, 2009).

  • Paoli, G. D., Curran, L. M. & Slik, J. W. F. Soil nutrients affect spatial patterns of aboveground biomass and emergent tree density in southwestern Borneo. Oecologia 155, 287–299 (2008).

    Article 

    Google Scholar 

  • Yoda, K., Kira, T., Ogawa, H. & Hozami, K. Self-thinning in overcrowded pure stands under cultivated and natural conditions. J. Biol. Osaka City Univ. 14, 107–129 (1963).

    Google Scholar 

  • Westoby, M. The self-thinning rule. Adv. Ecol. Res. 14, 167–225 (1984).

    Article 

    Google Scholar 

  • Weiner, J. & Freckleton, R. P. Constant final yield. Annu. Rev. Ecol. Evol. S. 41, 173–192 (2010).

    Article 

    Google Scholar 

  • Pillet, M. et al. Disentangling competitive vs. climatic drivers of tropical forest mortality. J. Ecol. 106, 1165–1179 (2018).

    Article 

    Google Scholar 

  • Schluter, D. Experimental evidence that competition promotes divergence in adaptive radiation. Science 266, 798–801 (1994).

    Article 
    CAS 

    Google Scholar 

  • Pacala, S.W. & Levin, S.A. Biologically generated spatial pattern and the coexistence of competing species. Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions. (Princeton University Press, Princeton, NJ, p. 204-232, 1997).

  • Asefa, M., Cao, M., Zhang, G., Ci, X. & Li, J. Yang Environmental filtering structures tree functional traits combination and lineages across space in tropical tree assemblages. Sci. Rep. 7, 1–10 (2017).

    Article 
    CAS 

    Google Scholar 

  • Pretzsch, H. & Biber, P. Tree species mixing can increase maximum stand density. Can. J. For. Res. 46, 1179–1193 (2016).

    Article 

    Google Scholar 

  • Escudero, A. et al. Every bit helps: The functional role of individuals in assembling any plant community, from the richest to monospecific ones. J. Veg. Sci. 32, e13059 (2021).

    Article 

    Google Scholar 

  • Jump, A. S. et al. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. Glob. Chang. Biol. 23, 3742–3757 (2017).

    Article 

    Google Scholar 

  • M. Takyu, Y. Kubota, S.I. Aiba, T. Seino, T. Nishimura. Pattern of changes in species diversity, structure and dynamics of forest ecosystems along latitudinal gradients in East Asia. In Forest Ecosystems and Environments (Springer, Tokyo, 2005), pp. 49–58.

  • Rivoire, M. & Le, G. A. Moguedec, generalized self-thinning relationship for multi-species and mixed-size forests. Ann. Sci. 69, 207–219 (2012).

    Article 

    Google Scholar 

  • Salas‐Eljatib, C. & Weiskittel, A. R. Evaluation of modelling strategies for assessing self‐thinning behaviour and carrying capacity. Ecol. Evol. 8, 10768–10779 (2018).

    Article 

    Google Scholar 

  • Schietti, J. et al. Forest structure along a 600 km transect of natural disturbances and seasonality gradients in central‐southern Amazonia. J. Ecol. 104, 1335–1346 (2016).

    Article 

    Google Scholar 

  • Vanclay, J. K. & Sands, P. J. Calibrating the self-thinning frontier. For. Ecol. Manag. 259, 81–85 (2009).

    Article 

    Google Scholar 

  • Sapijanskas, J., Paquette, A., Potvin, C., Kunert, N. & Loreau, M. Tropical tree diversity enhances light capture through crown plasticity and spatial and temporal niche differences. Ecology 95, 2479–2492 (2014).

    Article 

    Google Scholar 

  • Lieth, H. Modeling the primary productivity of the world. In H. Lieth & R. H. Whittaker, eds. Primary Productivity of the Biosphere (Springer-Verlag, New York, New York, USA, 1975), pp. 237–264.

  • Grieser, J., Gommes, R., Cofield, S., Bernardi, M. World Maps of Climatological net Primary Production of Biomass, NPP. Food and Agriculture Organization of the United Nations. (GEONETWORK. FAO, Rome, Italy, 2006).

  • Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS One 12, e0169748 (2017).

    Article 

    Google Scholar 

  • Wood, S. N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 99, 673–686 (2004).

    Article 

    Google Scholar 

  • J.B. Grace. Structural Equation Modeling and Natural Systems. (Cambridge University Press, Cambridge, 2006).

  • Aho, K., Derryberry, D. & Peterson, T. Model selection for ecologists: the worldviews of AIC and BIC. Ecology 95, 631–636 (2014).

    Article 

    Google Scholar 

  • R Core Team (2021). R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/).

  • Wood, S., Scheipl, F. & Wood, M. S. Package ‘gamm4’. Am. Stat. 45, 339 (2017).

    Google Scholar 

  • Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    Article 

    Google Scholar 

  • Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. R. Core Team nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-148 (2020).

  • Latham J, Cumani R, Rosati I, Bloise M. FAO Global Land Cover (GLC-SHARE) Database Beta-Release 1.0, Land and Water Division. 2014. http://www.fao.org/uploads/media/glc-share-doc.pdf.


  • Source: Ecology - nature.com

    Study: Extreme heat is changing habits of daily life

    Computers that power self-driving cars could be a huge driver of global carbon emissions