in

Global Protected Areas as refuges for amphibians and reptiles under climate change

  • Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089–E6096 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cowie, R. H., Bouchet, P. & Fontaine, B. The Sixth Mass Extinction: fact, fiction or speculation? Biol. Rev. 97, 640–663 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Ceballos, G. et al. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Urban, M. et al. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Pincheira-Donoso, D. et al. Temporal and spatial patterns of vertebrate extinctions during the Anthropocene. Preprint at bioRxiv https://doi.org/10.1101/2022.05.05.490605 (2022).

  • Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–224 (2015).

    Article 
    ADS 

    Google Scholar 

  • Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Warren, R. et al. Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nat. Clim. Change 3, 678–682 (2013).

    Article 
    ADS 

    Google Scholar 

  • Román-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl Acad. Sci. USA 117, 4211–4217 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gaston, K. J., Jackson, S. F., Cantú-Salazar, L. & Cruz-Piñón, G. The ecological performance of protected areas. Annu. Rev. Ecol. Evol. Syst. 39, 93–113 (2008).

    Article 

    Google Scholar 

  • Saout, S. L. et al. Protected areas and effective biodiversity conservation. Science 342, 803–805 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Araújo, M. B., Alagador, D., Cabeza, M., Noguésbravo, D. & Thuiller, W. Climate change threatens European conservation areas. Ecol. Lett. 14, 484–492 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, Y., Zhang, J., Jiang, J., Nielsen, S. & He, F. Assessing the effectiveness of China’s protected areas to conserve current and future amphibian diversity. Divers. Distrib. 23, 146–157 (2017).

    Article 

    Google Scholar 

  • Jenkins, C. N. & Joppa, L. Expansion of the global terrestrial protected area system. Biol. Conserv. 142, 2166–2174 (2009).

    Article 

    Google Scholar 

  • Johnston, A. et al. Observed and predicted effects of climate change on species abundance in protected areas. Nat. Clim. Change 3, 1055–1061 (2013).

    Article 
    ADS 

    Google Scholar 

  • Lehikoinen, P., Santangeli, A., Jaatinen, K., Rajasärkkä, A. & Lehikoinen, A. Protected areas act as a buffer against detrimental effects of climate change-evidence from large-scale, long-term abundance data. Glob. Change Biol. 25, 304–313 (2018).

    Article 
    ADS 

    Google Scholar 

  • Coetzee, B. W. T., Robertson, M. P., Erasmus, B. F. N., Rensburg, B. J. V. & Thuiller, W. Ensemble models predict Important Bird Areas in southern Africa will become less effective for conserving endemic birds under climate change. Glob. Ecol. Biogeogr. 18, 701–710 (2009).

    Article 

    Google Scholar 

  • Araújo, M. B., Cabeza, M., Thuiller, W., Hannah, L. & Williams, P. H. Would climate change drive species out of reserves? An assessment of existing reserve‐selection methods. Glob. Change Biol. 10, 1618–1626 (2004).

    Article 
    ADS 

    Google Scholar 

  • Pouzols, F. M. et al. Global protected area expansion is compromised by projected land-use and parochialism. Nature 516, 383–386 (2014).

    Article 
    ADS 

    Google Scholar 

  • Monzn, J., Moyer-Horner, L. & Palamar, M. B. Climate change and species range dynamics in protected areas. Bioscience 61, 752–761 (2011).

    Article 

    Google Scholar 

  • Newbold, T., Oppenheimer, P., Etard, A. & Williams, J. J. Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nat. Ecol. Evol. 4, 1630–1638 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Liu, X. et al. Animal invaders threaten protected areas worldwide. Nat. Commun. 11, 2892 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carlson, C. J. et al. Climate change increases cross-species viral transmission risk. Nature 607, 555–562 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Mi, C., Huettmann, F. & Guo, Y. Climate envelope predictions indicate an enlarged suitable wintering distribution for Great Bustards (Otis tarda dybowskii) in China for the 21st century. Peerj 4, e1630–e1630 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, G., Papeş, M., Giam, X., Cho, S.-H. & Armsworth, P. R. Are protected areas well-sited to support species in the future in a major climate refuge and corridor in the United States? Biol. Conserv. 255, 108982 (2021).

    Article 

    Google Scholar 

  • Gutiérrez, J. A. & Duivenvoorden, J. F. Can we expect to protect threatened species in protected areas? A case study of the genus Pinus in Mexico. Rev. Mexicana Biodivers. 81, 875–882 (2010).

    Google Scholar 

  • Velásquez-Tibatá, J., Salaman, P. & Graham, C. H. Effects of climate change on species distribution, community structure, and conservation of birds in protected areas in Colombia. Reg. Environ. Change 13, 235–248 (2013).

    Article 

    Google Scholar 

  • Riquelme, C. et al. Protected areas’ effectiveness under climate change: a latitudinal distribution projection of an endangered mountain ungulate along the Andes Range. Peerj 6, e5222 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bazzichetto, M. et al. Plant invasion risk: a quest for invasive species distribution modelling in managing protected areas. Ecol. Indic. 95, 311–319 (2018).

    Article 

    Google Scholar 

  • Hannah, L. et al. Protected area needs in a changing climate. Front. Ecol. Environ. 5, 131–138 (2007).

    Article 

    Google Scholar 

  • Cox, N. et al. A global reptile assessment highlights shared conservation needs of tetrapods. Nature 695, 285–290 (2022).

    Article 
    ADS 

    Google Scholar 

  • IUCN. The IUCN red list of threatened species. http://www.iucnredlist.org/ (2021).

  • Wake, D. B. & Vredenburg, V. T. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc. Natl Acad. Sci. USA 105, 11466–11473 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cordier, J. M. et al. A global assessment of amphibian and reptile responses to land-use changes. Biol. Conserv. 253, 108863 (2021).

    Article 

    Google Scholar 

  • Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change 9, 323–329 (2019).

    Article 
    ADS 

    Google Scholar 

  • Pounds, J. A. et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439, 161–167 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459–1463 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Blaustein, A. R. & Kiesecker, J. M. Complexity in conservation: lessons from the global decline of amphibian populations. Ecol. Lett. 5, 597–608 (2002).

    Article 

    Google Scholar 

  • Kraus, F. Impacts from invasive reptiles and amphibians. Annu. Rev. Ecol. Evol. Syst. 46, 75–97 (2015).

    Article 

    Google Scholar 

  • Alford, R. A., Bradfield, K. S. & Richards, S. J. Global warming and amphibian losses. Nature 447, E3–E4 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Hof, C., Araújo, M. B., Jetz, W. & Rahbek, C. Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature 480, 516–519 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Rohr, J. R. & Raffel, T. R. Linking global climate and temperature variability to widespread amphibian declines putatively caused by disease. Proc. Natl Acad. Sci. USA 107, 8269–8274 (2008).

    Article 
    ADS 

    Google Scholar 

  • Pincheira‐Donoso, D. et al. The global macroecology of brood size in amphibians reveals a predisposition of low‐fecundity species to extinction. Glob. Ecol. Biogeogr. 30, 1299–1310 (2021).

    Article 

    Google Scholar 

  • Smith, M. A. & Green, D. M. Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28, 110–128 (2005).

    Article 

    Google Scholar 

  • Borzée, A. et al. Climate change-based models predict range shifts in the distribution of the only Asian plethodontid salamander: Karsenia koreana. Sci. Rep. 9, 11838 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heller, N. E. & Zavaleta, E. S. Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol. Conserv. 142, 14–32 (2009).

    Article 

    Google Scholar 

  • Haight, J. & Hammill, E. Protected areas as potential refugia for biodiversity under climatic change. Biol. Conserv. 241, 108258 (2020).

    Article 

    Google Scholar 

  • Thomas, C. D. et al. Protected areas facilitate species’ range expansions. Proc. Natl Acad. Sci. USA 109, 14063–14068 (2012).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lawson, C. R., Bennie, J. J., Thomas, C. D., Hodgson, J. A. & Wilson, R. J. Active management of protected areas enhances metapopulation expansion under climate change. Conserv. Lett. 7, 111–118 (2014).

    Article 

    Google Scholar 

  • Beale, C. M., Baker, N. E., Brewer, M. J. & Lennon, J. J. Protected area networks and savannah bird biodiversity in the face of climate change and land degradation. Ecol. Lett. 16, 1061–1068 (2013).

    Article 
    PubMed 

    Google Scholar 

  • D’Amen, M. et al. Will climate change reduce the efficacy of protected areas for amphibian conservation in Italy? Biol. Conserv. 144, 989–997 (2011).

    Article 

    Google Scholar 

  • Singh, M. Evaluating the impact of future climate and forest cover change on the ability of Southeast (SE) Asia’s protected areas to provide coverage to the habitats of threatened avian species. Ecol. Indic. 114, 106307 (2020).

    Article 

    Google Scholar 

  • Hole, D. G. et al. Projected impacts of climate change on a continent‐wide protected area network. Ecol. Lett. 12, 420–431 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Lehikoinen, P. et al. Increasing protected area coverage mitigates climate-driven community changes. Biol. Conserv. 253, 108892 (2021).

    Article 

    Google Scholar 

  • Araújo, M. B., Thuiller, W. & Pearson, R. G. Climate warming and the decline of amphibians and reptiles in Europe. J. Biogeogr. 33, 1712–1728 (2006).

    Article 

    Google Scholar 

  • Girardello, M., Griggio, M., Whittingham, M. J. & Rushton, S. P. Models of climate associations and distributions of amphibians in Italy. Ecol. Res. 25, 103–111 (2010).

    Article 

    Google Scholar 

  • McMenamin, S. K., Hadly, E. A. & Wright, C. K. Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park. Proc. Natl Acad. Sci. USA 105, 16988–16993 (2008).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ficetola, G. F. & Maiorano, L. Contrasting effects of temperature and precipitation change on amphibian phenology, abundance and performance. Oecologia 181, 683–693 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Bickford, D., Howard, S. D., Ng, D. J. J. & Sheridan, J. A. Impacts of climate change on the amphibians and reptiles of Southeast Asia. Biodivers. Conserv. 19, 1043–1062 (2010).

    Article 

    Google Scholar 

  • Manne, L. L., Brooks, T. M. & Pimm, S. L. Relative risk of extinction of passerine birds on continents and islands. Nature 399, 258–261 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2602–E2610 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pearson, R. G. et al. Life history and spatial traits predict extinction risk due to climate change. Nat. Clim. Change 4, 217–221 (2014).

    Article 
    ADS 

    Google Scholar 

  • Wauchope, H. S. et al. Protected areas have a mixed impact on waterbirds, but management helps. Nature 605, 103–107 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • WWF. Tropical and Subtropical Moist Broadleaf Forest Ecoregions (World Wide Fund for Nature, 2019).

  • Rodrigues, A. S. L. et al. Global gap analysis: priority regions for expanding the global protected-area network. Bioscience 54, 1092–1100 (2004).

    Article 

    Google Scholar 

  • Hidasi‐Neto, J., Loyola, R. & Cianciaruso, M. V. Global and local evolutionary and ecological distinctiveness of terrestrial mammals: identifying priorities across scales. Divers. Distrib. 21, 548–559 (2015).

    Article 

    Google Scholar 

  • Martin, J.-L., Maris, V. & Simberloff, D. S. The need to respect nature and its limits challenges society and conservation science. Proc. Natl Acad. Sci. USA 113, 6105–6112 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Czech, B., Krausman, P. & Devers, P. Economic associations among causes of species endangerment in the United States. Bioscience 50, 593–601 (2000).

    Article 

    Google Scholar 

  • CBD. First draft of the post-2020 global biodiversity framework. https://www.cbd.int/doc/c/abb5/591f/2e46096d3f0330b08ce87a45/wg2020-03-03-en.pdf (2021).

  • Roll, U. et al. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat. Ecol. Evol. 1, 1677–1682 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Ficetola, G. F. et al. An evaluation of the robustness of global amphibian range maps. J. Biogeogr. 41, 211–221 (2014).

    Article 

    Google Scholar 

  • Aiello‐Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545 (2015).

    Article 

    Google Scholar 

  • Erfanian, M. B., Sagharyan, M., Memariani, F. & Ejtehadi, H. Predicting range shifts of three endangered endemic plants of the Khorassan-Kopet Dagh floristic province under global change. Sci. Rep. 11, 9159 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brown, J. L., Cameron, A., Yoder, A. D. & Vences, M. A necessarily complex model to explain the biogeography of the amphibians and reptiles of Madagascar. Nat. Commun. 5, 5046 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gaston, K. J. Rarity as double jeopardy. Nature 394, 229–230 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article 

    Google Scholar 

  • Li, X., Liu, X., Kraus, F., Tingley, R. & Li, Y. Risk of biological invasions is concentrated in biodiversity hotspots. Front. Ecol. Environ. 14, 411–417 (2016).

    Article 

    Google Scholar 

  • Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling? Ecography 37, 191–203 (2014).

    Article 

    Google Scholar 

  • Xin, X., Wu, T. & Zhang, J. Introduction of CMIP5 experiments carried out with the climate system models of beijing climate center. Adv. Clim. Change Res. 4, 41–49 (2013).

    Article 

    Google Scholar 

  • Voldoire, A. et al. The CNRM-CM5.1 global climate model: description and basic evaluation. Clim. Dyn. 40, 2091–2121 (2013).

    Article 

    Google Scholar 

  • Watanabe, S. et al. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. 4, 845–872 (2011).

    Article 
    ADS 

    Google Scholar 

  • Mi, C. et al. Temperate and tropical lizards are vulnerable to climate warming due to increased water loss and heat stress. Proc. R. Soc. Lond. B. Biol. Sci. 289, 20221074 (2022).

    Google Scholar 

  • Naimi, B. & Araújo, M. B. sdm: a reproducible and extensible R platform for species distribution modelling. Ecography 39, 368–375 (2016).

    Article 

    Google Scholar 

  • Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science 339, 74–78 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: how, where and how many?: How to use pseudo-absences in niche modelling? Methods Ecol. Evol. 3, 327–338 (2012).

    Article 

    Google Scholar 

  • Andrade, A. F. A., de, Velazco, S. J. E. & Júnior, P. D. M. ENMTML: an R package for a straightforward construction of complex ecological niche models. Environ. Modell. Softw. 125, 104615 (2020).

    Article 

    Google Scholar 

  • Senay, S. D., Worner, S. P. & Ikeda, T. Novel three-step pseudo-absence selection technique for improved species distribution modelling. PLos ONE 8, e71218 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thuiller, W. BIOMOD–optimizing predictions of species distributions and projecting potential future shifts under global change. Glob. Change Biol. 9, 1353–1362 (2003).

    Article 
    ADS 

    Google Scholar 

  • Williams, J. N. et al. Using species distribution models to predict new occurrences for rare plants. Divers. Distrib. 15, 565–576 (2009).

    Article 

    Google Scholar 

  • Graham, C. H. et al. The influence of spatial errors in species occurrence data used in distribution models. J. Appl. Ecol. 45, 239–247 (2008).

    Article 

    Google Scholar 

  • Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).

    Article 

    Google Scholar 

  • Mi, C., Huettmann, F., Guo, Y., Han, X. & Wen, L. Why choose Random Forest to predict rare species distribution with few samples in large undersampled areas? Three Asian crane species models provide supporting evidence. Peerj 5, e2849 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Drake, J. M., Randin, C. & Guisan, A. Modelling ecological niches with support vector machines. J. Appl. Ecol. 43, 424–432 (2006).

    Article 

    Google Scholar 

  • Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).

    Article 

    Google Scholar 

  • McPherson, J., Jetz, W. & Rogers, D. J. The effects of species’ range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact? J. Appl. Ecol. 41, 811–823 (2004).

    Article 

    Google Scholar 

  • Wang, B. et al. Australian wheat production expected to decrease by the late 21st century. Glob. Change Biol. 24, 2403–2415 (2017).

    Article 
    ADS 

    Google Scholar 

  • Gallardo, B. et al. Protected areas offer refuge from invasive species spreading under climate change. Glob. Change Biol. 23, 5331–5343 (2017).

    Article 
    ADS 

    Google Scholar 

  • Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD – a platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).

    Article 

    Google Scholar 

  • UNEP-WCMC, I. and. The world database on protected areas (WDPA). https://www.protectedplanet.net/en#4_43.25_111_0 (2014).

  • Asamoah, E. F., Beaumont, L. J. & Maina, J. M. Climate and land-use changes reduce the benefits of terrestrial protected areas. Nat. Clim. Change 11, 1105–1110 (2021).

    Article 
    ADS 

    Google Scholar 

  • Brennan, A. et al. Functional connectivity of the world’s protected areas. Science 376, 1101–1104 (2022).

  • You, Z. et al. Pitfall of big databases. Proc. Natl Acad. Sci. USA 115, 201813323 (2018).

    Article 

    Google Scholar 

  • Nelson, A. & Chomitz, K. M. Effectiveness of strict vs. multiple use protected areas in reducing tropical forest fires: a global analysis using matching methods. PLoS ONE 6, e22722 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Albuquerque, F. & Beier, P. Rarity-weighted richness: a simple and reliable alternative to integer programming and heuristic algorithms for minimum set and maximum coverage problems in conservation planning. PLoS ONE 10, e0119905 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tang, C. Q. et al. Identifying long-term stable refugia for relict plant species in East Asia. Nat. Commun. 9, 4488 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kier, G. & Barthlott, W. Measuring and mapping endemism and species richness: a new methodological approach and its application on the flora of Africa. Biodivers. Conserv 10, 1513–1529 (2001).

    Article 

    Google Scholar 

  • Albuquerque, F. & Gregory, A. The geography of hotspots of rarity-weighted richness of birds and their coverage by Natura 2000. PLoS ONE 12, e0174179 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jennings, M. D. Gap analysis: concepts, methods, and recent results. Landsc. Ecol. 15, 5–20 (2000).

    Article 

    Google Scholar 

  • Romero‐Muñoz, A. et al. Increasing synergistic effects of habitat destruction and hunting on mammals over three decades in the Gran Chaco. Ecography 43, 954–966 (2020).

    Article 

    Google Scholar 

  • Brooks, T. M. et al. Global biodiversity conservation priorities. Science 313, 58–61 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Larval rockfish growth and survival in response to anomalous ocean conditions

    When legislation to protect wildlife becomes a problem