Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).
Google Scholar
Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089–E6096 (2017).
Google Scholar
Cowie, R. H., Bouchet, P. & Fontaine, B. The Sixth Mass Extinction: fact, fiction or speculation? Biol. Rev. 97, 640–663 (2022).
Google Scholar
Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406 (2014).
Google Scholar
Ceballos, G. et al. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).
Google Scholar
Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).
Google Scholar
Urban, M. et al. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).
Google Scholar
Pincheira-Donoso, D. et al. Temporal and spatial patterns of vertebrate extinctions during the Anthropocene. Preprint at bioRxiv https://doi.org/10.1101/2022.05.05.490605 (2022).
Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008).
Google Scholar
Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–224 (2015).
Google Scholar
Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).
Google Scholar
Warren, R. et al. Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nat. Clim. Change 3, 678–682 (2013).
Google Scholar
Román-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl Acad. Sci. USA 117, 4211–4217 (2020).
Google Scholar
Gaston, K. J., Jackson, S. F., Cantú-Salazar, L. & Cruz-Piñón, G. The ecological performance of protected areas. Annu. Rev. Ecol. Evol. Syst. 39, 93–113 (2008).
Google Scholar
Saout, S. L. et al. Protected areas and effective biodiversity conservation. Science 342, 803–805 (2013).
Google Scholar
Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).
Google Scholar
Araújo, M. B., Alagador, D., Cabeza, M., Noguésbravo, D. & Thuiller, W. Climate change threatens European conservation areas. Ecol. Lett. 14, 484–492 (2011).
Google Scholar
Chen, Y., Zhang, J., Jiang, J., Nielsen, S. & He, F. Assessing the effectiveness of China’s protected areas to conserve current and future amphibian diversity. Divers. Distrib. 23, 146–157 (2017).
Google Scholar
Jenkins, C. N. & Joppa, L. Expansion of the global terrestrial protected area system. Biol. Conserv. 142, 2166–2174 (2009).
Google Scholar
Johnston, A. et al. Observed and predicted effects of climate change on species abundance in protected areas. Nat. Clim. Change 3, 1055–1061 (2013).
Google Scholar
Lehikoinen, P., Santangeli, A., Jaatinen, K., Rajasärkkä, A. & Lehikoinen, A. Protected areas act as a buffer against detrimental effects of climate change-evidence from large-scale, long-term abundance data. Glob. Change Biol. 25, 304–313 (2018).
Google Scholar
Coetzee, B. W. T., Robertson, M. P., Erasmus, B. F. N., Rensburg, B. J. V. & Thuiller, W. Ensemble models predict Important Bird Areas in southern Africa will become less effective for conserving endemic birds under climate change. Glob. Ecol. Biogeogr. 18, 701–710 (2009).
Google Scholar
Araújo, M. B., Cabeza, M., Thuiller, W., Hannah, L. & Williams, P. H. Would climate change drive species out of reserves? An assessment of existing reserve‐selection methods. Glob. Change Biol. 10, 1618–1626 (2004).
Google Scholar
Pouzols, F. M. et al. Global protected area expansion is compromised by projected land-use and parochialism. Nature 516, 383–386 (2014).
Google Scholar
Monzn, J., Moyer-Horner, L. & Palamar, M. B. Climate change and species range dynamics in protected areas. Bioscience 61, 752–761 (2011).
Google Scholar
Newbold, T., Oppenheimer, P., Etard, A. & Williams, J. J. Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nat. Ecol. Evol. 4, 1630–1638 (2020).
Google Scholar
Liu, X. et al. Animal invaders threaten protected areas worldwide. Nat. Commun. 11, 2892 (2020).
Google Scholar
Carlson, C. J. et al. Climate change increases cross-species viral transmission risk. Nature 607, 555–562 (2022).
Google Scholar
Mi, C., Huettmann, F. & Guo, Y. Climate envelope predictions indicate an enlarged suitable wintering distribution for Great Bustards (Otis tarda dybowskii) in China for the 21st century. Peerj 4, e1630–e1630 (2016).
Google Scholar
Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).
Google Scholar
Zhu, G., Papeş, M., Giam, X., Cho, S.-H. & Armsworth, P. R. Are protected areas well-sited to support species in the future in a major climate refuge and corridor in the United States? Biol. Conserv. 255, 108982 (2021).
Google Scholar
Gutiérrez, J. A. & Duivenvoorden, J. F. Can we expect to protect threatened species in protected areas? A case study of the genus Pinus in Mexico. Rev. Mexicana Biodivers. 81, 875–882 (2010).
Velásquez-Tibatá, J., Salaman, P. & Graham, C. H. Effects of climate change on species distribution, community structure, and conservation of birds in protected areas in Colombia. Reg. Environ. Change 13, 235–248 (2013).
Google Scholar
Riquelme, C. et al. Protected areas’ effectiveness under climate change: a latitudinal distribution projection of an endangered mountain ungulate along the Andes Range. Peerj 6, e5222 (2018).
Google Scholar
Bazzichetto, M. et al. Plant invasion risk: a quest for invasive species distribution modelling in managing protected areas. Ecol. Indic. 95, 311–319 (2018).
Google Scholar
Hannah, L. et al. Protected area needs in a changing climate. Front. Ecol. Environ. 5, 131–138 (2007).
Google Scholar
Cox, N. et al. A global reptile assessment highlights shared conservation needs of tetrapods. Nature 695, 285–290 (2022).
Google Scholar
IUCN. The IUCN red list of threatened species. http://www.iucnredlist.org/ (2021).
Wake, D. B. & Vredenburg, V. T. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc. Natl Acad. Sci. USA 105, 11466–11473 (2008).
Google Scholar
Cordier, J. M. et al. A global assessment of amphibian and reptile responses to land-use changes. Biol. Conserv. 253, 108863 (2021).
Google Scholar
Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change 9, 323–329 (2019).
Google Scholar
Pounds, J. A. et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439, 161–167 (2006).
Google Scholar
Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459–1463 (2019).
Google Scholar
Blaustein, A. R. & Kiesecker, J. M. Complexity in conservation: lessons from the global decline of amphibian populations. Ecol. Lett. 5, 597–608 (2002).
Google Scholar
Kraus, F. Impacts from invasive reptiles and amphibians. Annu. Rev. Ecol. Evol. Syst. 46, 75–97 (2015).
Google Scholar
Alford, R. A., Bradfield, K. S. & Richards, S. J. Global warming and amphibian losses. Nature 447, E3–E4 (2007).
Google Scholar
Hof, C., Araújo, M. B., Jetz, W. & Rahbek, C. Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature 480, 516–519 (2011).
Google Scholar
Rohr, J. R. & Raffel, T. R. Linking global climate and temperature variability to widespread amphibian declines putatively caused by disease. Proc. Natl Acad. Sci. USA 107, 8269–8274 (2008).
Google Scholar
Pincheira‐Donoso, D. et al. The global macroecology of brood size in amphibians reveals a predisposition of low‐fecundity species to extinction. Glob. Ecol. Biogeogr. 30, 1299–1310 (2021).
Google Scholar
Smith, M. A. & Green, D. M. Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28, 110–128 (2005).
Google Scholar
Borzée, A. et al. Climate change-based models predict range shifts in the distribution of the only Asian plethodontid salamander: Karsenia koreana. Sci. Rep. 9, 11838 (2019).
Google Scholar
Heller, N. E. & Zavaleta, E. S. Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol. Conserv. 142, 14–32 (2009).
Google Scholar
Haight, J. & Hammill, E. Protected areas as potential refugia for biodiversity under climatic change. Biol. Conserv. 241, 108258 (2020).
Google Scholar
Thomas, C. D. et al. Protected areas facilitate species’ range expansions. Proc. Natl Acad. Sci. USA 109, 14063–14068 (2012).
Google Scholar
Lawson, C. R., Bennie, J. J., Thomas, C. D., Hodgson, J. A. & Wilson, R. J. Active management of protected areas enhances metapopulation expansion under climate change. Conserv. Lett. 7, 111–118 (2014).
Google Scholar
Beale, C. M., Baker, N. E., Brewer, M. J. & Lennon, J. J. Protected area networks and savannah bird biodiversity in the face of climate change and land degradation. Ecol. Lett. 16, 1061–1068 (2013).
Google Scholar
D’Amen, M. et al. Will climate change reduce the efficacy of protected areas for amphibian conservation in Italy? Biol. Conserv. 144, 989–997 (2011).
Google Scholar
Singh, M. Evaluating the impact of future climate and forest cover change on the ability of Southeast (SE) Asia’s protected areas to provide coverage to the habitats of threatened avian species. Ecol. Indic. 114, 106307 (2020).
Google Scholar
Hole, D. G. et al. Projected impacts of climate change on a continent‐wide protected area network. Ecol. Lett. 12, 420–431 (2009).
Google Scholar
Lehikoinen, P. et al. Increasing protected area coverage mitigates climate-driven community changes. Biol. Conserv. 253, 108892 (2021).
Google Scholar
Araújo, M. B., Thuiller, W. & Pearson, R. G. Climate warming and the decline of amphibians and reptiles in Europe. J. Biogeogr. 33, 1712–1728 (2006).
Google Scholar
Girardello, M., Griggio, M., Whittingham, M. J. & Rushton, S. P. Models of climate associations and distributions of amphibians in Italy. Ecol. Res. 25, 103–111 (2010).
Google Scholar
McMenamin, S. K., Hadly, E. A. & Wright, C. K. Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park. Proc. Natl Acad. Sci. USA 105, 16988–16993 (2008).
Google Scholar
Ficetola, G. F. & Maiorano, L. Contrasting effects of temperature and precipitation change on amphibian phenology, abundance and performance. Oecologia 181, 683–693 (2016).
Google Scholar
Bickford, D., Howard, S. D., Ng, D. J. J. & Sheridan, J. A. Impacts of climate change on the amphibians and reptiles of Southeast Asia. Biodivers. Conserv. 19, 1043–1062 (2010).
Google Scholar
Manne, L. L., Brooks, T. M. & Pimm, S. L. Relative risk of extinction of passerine birds on continents and islands. Nature 399, 258–261 (1999).
Google Scholar
Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2602–E2610 (2013).
Google Scholar
Pearson, R. G. et al. Life history and spatial traits predict extinction risk due to climate change. Nat. Clim. Change 4, 217–221 (2014).
Google Scholar
Wauchope, H. S. et al. Protected areas have a mixed impact on waterbirds, but management helps. Nature 605, 103–107 (2022).
Google Scholar
WWF. Tropical and Subtropical Moist Broadleaf Forest Ecoregions (World Wide Fund for Nature, 2019).
Rodrigues, A. S. L. et al. Global gap analysis: priority regions for expanding the global protected-area network. Bioscience 54, 1092–1100 (2004).
Google Scholar
Hidasi‐Neto, J., Loyola, R. & Cianciaruso, M. V. Global and local evolutionary and ecological distinctiveness of terrestrial mammals: identifying priorities across scales. Divers. Distrib. 21, 548–559 (2015).
Google Scholar
Martin, J.-L., Maris, V. & Simberloff, D. S. The need to respect nature and its limits challenges society and conservation science. Proc. Natl Acad. Sci. USA 113, 6105–6112 (2016).
Google Scholar
Czech, B., Krausman, P. & Devers, P. Economic associations among causes of species endangerment in the United States. Bioscience 50, 593–601 (2000).
Google Scholar
CBD. First draft of the post-2020 global biodiversity framework. https://www.cbd.int/doc/c/abb5/591f/2e46096d3f0330b08ce87a45/wg2020-03-03-en.pdf (2021).
Roll, U. et al. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat. Ecol. Evol. 1, 1677–1682 (2017).
Google Scholar
Ficetola, G. F. et al. An evaluation of the robustness of global amphibian range maps. J. Biogeogr. 41, 211–221 (2014).
Google Scholar
Aiello‐Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545 (2015).
Google Scholar
Erfanian, M. B., Sagharyan, M., Memariani, F. & Ejtehadi, H. Predicting range shifts of three endangered endemic plants of the Khorassan-Kopet Dagh floristic province under global change. Sci. Rep. 11, 9159 (2021).
Google Scholar
Brown, J. L., Cameron, A., Yoder, A. D. & Vences, M. A necessarily complex model to explain the biogeography of the amphibians and reptiles of Madagascar. Nat. Commun. 5, 5046 (2014).
Google Scholar
Gaston, K. J. Rarity as double jeopardy. Nature 394, 229–230 (1998).
Google Scholar
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
Google Scholar
Li, X., Liu, X., Kraus, F., Tingley, R. & Li, Y. Risk of biological invasions is concentrated in biodiversity hotspots. Front. Ecol. Environ. 14, 411–417 (2016).
Google Scholar
Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling? Ecography 37, 191–203 (2014).
Google Scholar
Xin, X., Wu, T. & Zhang, J. Introduction of CMIP5 experiments carried out with the climate system models of beijing climate center. Adv. Clim. Change Res. 4, 41–49 (2013).
Google Scholar
Voldoire, A. et al. The CNRM-CM5.1 global climate model: description and basic evaluation. Clim. Dyn. 40, 2091–2121 (2013).
Google Scholar
Watanabe, S. et al. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. 4, 845–872 (2011).
Google Scholar
Mi, C. et al. Temperate and tropical lizards are vulnerable to climate warming due to increased water loss and heat stress. Proc. R. Soc. Lond. B. Biol. Sci. 289, 20221074 (2022).
Naimi, B. & Araújo, M. B. sdm: a reproducible and extensible R platform for species distribution modelling. Ecography 39, 368–375 (2016).
Google Scholar
Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science 339, 74–78 (2013).
Google Scholar
Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: how, where and how many?: How to use pseudo-absences in niche modelling? Methods Ecol. Evol. 3, 327–338 (2012).
Google Scholar
Andrade, A. F. A., de, Velazco, S. J. E. & Júnior, P. D. M. ENMTML: an R package for a straightforward construction of complex ecological niche models. Environ. Modell. Softw. 125, 104615 (2020).
Google Scholar
Senay, S. D., Worner, S. P. & Ikeda, T. Novel three-step pseudo-absence selection technique for improved species distribution modelling. PLos ONE 8, e71218 (2013).
Google Scholar
Thuiller, W. BIOMOD–optimizing predictions of species distributions and projecting potential future shifts under global change. Glob. Change Biol. 9, 1353–1362 (2003).
Google Scholar
Williams, J. N. et al. Using species distribution models to predict new occurrences for rare plants. Divers. Distrib. 15, 565–576 (2009).
Google Scholar
Graham, C. H. et al. The influence of spatial errors in species occurrence data used in distribution models. J. Appl. Ecol. 45, 239–247 (2008).
Google Scholar
Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).
Google Scholar
Mi, C., Huettmann, F., Guo, Y., Han, X. & Wen, L. Why choose Random Forest to predict rare species distribution with few samples in large undersampled areas? Three Asian crane species models provide supporting evidence. Peerj 5, e2849 (2017).
Google Scholar
Drake, J. M., Randin, C. & Guisan, A. Modelling ecological niches with support vector machines. J. Appl. Ecol. 43, 424–432 (2006).
Google Scholar
Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
Google Scholar
McPherson, J., Jetz, W. & Rogers, D. J. The effects of species’ range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact? J. Appl. Ecol. 41, 811–823 (2004).
Google Scholar
Wang, B. et al. Australian wheat production expected to decrease by the late 21st century. Glob. Change Biol. 24, 2403–2415 (2017).
Google Scholar
Gallardo, B. et al. Protected areas offer refuge from invasive species spreading under climate change. Glob. Change Biol. 23, 5331–5343 (2017).
Google Scholar
Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD – a platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).
Google Scholar
UNEP-WCMC, I. and. The world database on protected areas (WDPA). https://www.protectedplanet.net/en#4_43.25_111_0 (2014).
Asamoah, E. F., Beaumont, L. J. & Maina, J. M. Climate and land-use changes reduce the benefits of terrestrial protected areas. Nat. Clim. Change 11, 1105–1110 (2021).
Google Scholar
Brennan, A. et al. Functional connectivity of the world’s protected areas. Science 376, 1101–1104 (2022).
You, Z. et al. Pitfall of big databases. Proc. Natl Acad. Sci. USA 115, 201813323 (2018).
Google Scholar
Nelson, A. & Chomitz, K. M. Effectiveness of strict vs. multiple use protected areas in reducing tropical forest fires: a global analysis using matching methods. PLoS ONE 6, e22722 (2011).
Google Scholar
Albuquerque, F. & Beier, P. Rarity-weighted richness: a simple and reliable alternative to integer programming and heuristic algorithms for minimum set and maximum coverage problems in conservation planning. PLoS ONE 10, e0119905 (2015).
Google Scholar
Tang, C. Q. et al. Identifying long-term stable refugia for relict plant species in East Asia. Nat. Commun. 9, 4488 (2018).
Google Scholar
Kier, G. & Barthlott, W. Measuring and mapping endemism and species richness: a new methodological approach and its application on the flora of Africa. Biodivers. Conserv 10, 1513–1529 (2001).
Google Scholar
Albuquerque, F. & Gregory, A. The geography of hotspots of rarity-weighted richness of birds and their coverage by Natura 2000. PLoS ONE 12, e0174179 (2017).
Google Scholar
Jennings, M. D. Gap analysis: concepts, methods, and recent results. Landsc. Ecol. 15, 5–20 (2000).
Google Scholar
Romero‐Muñoz, A. et al. Increasing synergistic effects of habitat destruction and hunting on mammals over three decades in the Gran Chaco. Ecography 43, 954–966 (2020).
Google Scholar
Brooks, T. M. et al. Global biodiversity conservation priorities. Science 313, 58–61 (2006).
Google Scholar
Source: Ecology - nature.com