in

Higher productivity in forests with mixed mycorrhizal strategies

[adace-ad id="91168"]
  • Liang, J. et al. Positive biodiversity-productivity relationship predominant in global forests. Science 354, aaf8957 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Huang, Y. et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 362, 80–83 (2018).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Luo, S. et al. Community‐wide trait means and variations affect biomass in a biodiversity experiment with tree seedlings. Oikos 129, 799–810 (2020).

    Article 

    Google Scholar 

  • Pérez-Harguindeguy, N. et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167–234 (2013).

    Article 

    Google Scholar 

  • Bergmann, J. et al. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 6, 1–10 (2020).

    Article 

    Google Scholar 

  • Freschet, G. T. et al. Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. N. Phytol. 232, 1123–1158 (2021).

    Article 

    Google Scholar 

  • Zhong, Y. et al. Arbuscular mycorrhizal trees influence the latitudinal beta-diversity gradient of tree communities in forests worldwide. Nat. Commun. 12, 1–12 (2021).

    Article 
    ADS 

    Google Scholar 

  • Carteron, A., Vellend, M. & Laliberté, E. Mycorrhizal dominance reduces local tree species diversity across US forests. Nat. Ecol. Evol. 6, 370–374 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Phillips, R. P., Brzostek, E. & Midgley, M. G. The mycorrhizal‐associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. N. Phytol. 199, 41–51 (2013).

    Article 
    CAS 

    Google Scholar 

  • Averill, C., Turner, B. L. & Finzi, A. C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505, 543–545 (2014).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Craig, M. E. et al. Tree mycorrhizal type predicts within‐site variability in the storage and distribution of soil organic matter. Glob. Chang. Biol. 24, 3317–3330 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • van der Heijden, M. G. A. et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69–72 (1998).

    Article 
    ADS 

    Google Scholar 

  • Klironomos, J. N., McCune, J., Hart, M. & Neville, J. The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecol. Lett. 3, 137–141 (2000).

    Article 

    Google Scholar 

  • Wagg, C., Jansa, J., Stadler, M., Schmid, B. & Van Der Heijden, M. G. A. Mycorrhizal fungal identity and diversity relaxes plant-plant competition. Ecology 92, 1303–1313 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Luo, S., Schmid, B., De Deyn, G. B. & Yu, S. Soil microbes promote complementarity effects among co‐existing trees through soil nitrogen partitioning. Funct. Ecol. 32, 1879–1889 (2018).

    Article 

    Google Scholar 

  • Ferlian, O. et al. Mycorrhiza in tree diversity–ecosystem function relationships: conceptual framework and experimental implementation. Ecosphere 9, e02226 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tedersoo, L. & Bahram, M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biol. Rev. 94, 1857–1880 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Rineau, F. et al. The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry. Environ. Microbiol. 14, 1477–1487 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lindahl, B. D. & Tunlid, A. Ectomycorrhizal fungi – potential organic matter decomposers, yet not saprotrophs. N. Phytol. 205, 1443–1447 (2015).

    Article 
    CAS 

    Google Scholar 

  • Hodge, A. Arbuscular mycorrhizal fungi influence decomposition of, but not plant nutrient capture from, glycine patches in soil. N. Phytol. 151, 725–734 (2001).

    Article 
    CAS 

    Google Scholar 

  • Read, D. J. & Perez-Moreno, J. Mycorrhizas and nutrient cycling in ecosystems – A journey towards relevance? N. Phytol. 157, 475–492 (2003).

    Article 
    CAS 

    Google Scholar 

  • Toju, H., Kishida, O., Katayama, N. & Takagi, K. Networks depicting the fine-scale co-occurrences of fungi in soil horizons. PLoS ONE 11, 1–18 (2016).

    Article 

    Google Scholar 

  • Taylor, D. L. et al. A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning. Ecol. Monogr. 84, 3–20 (2014).

    Article 

    Google Scholar 

  • Chen, W. et al. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proc. Natl Acad. Sci. USA 113, 8741–8746 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, X. et al. Partitioning of soil phosphorus among arbuscular and ectomycorrhizal trees in tropical and subtropical forests. Ecol. Lett. 21, 713–723 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Averill, C., Bhatnagar, J. M., Dietze, M. C., Pearse, W. D. & Kivlin, S. N. Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proc. Natl Acad. Sci. USA 116, 23163–23168 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dietrich, P. et al. Tree diversity effects on productivity depend on mycorrhizae and life strategies in a temperate forest experiment. Ecology 104, e3896 https://doi.org/10.1002/ecy.3896 (2022).

  • Averill, C., Dietze, M. C. & Bhatnagar, J. M. Continental-scale nitrogen pollution is shifting forest mycorrhizal associations and soil carbon stocks. Glob. Chang. Biol. 24, 4544–4553 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Jo, I., Fei, S., Oswalt, C. M., Domke, G. M. & Phillips, R. P. Shifts in dominant tree mycorrhizal associations in response to anthropogenic impacts. Sci. Adv. 5, eaav6358, (2019).

  • Fei, S. et al. Impacts of climate on the biodiversity-productivity relationship in natural forests. Nat. Commun. 9, 5436 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bongers, F. J. et al. Functional diversity effects on productivity increase with age in a forest biodiversity experiment. Nat. Ecol. Evol. 5, 1594–1603 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Schoener, T. W. Resource partitioning in ecological communities. Science 185, 27–39 (1974).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Tilman, D., Lehman, C. L. & Thomson, K. T. Plant diversity and ecosystem productivity: theoretical considerations. Proc. Natl Acad. Sci. USA 94, 1857–1861 (1997).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schwilk, D. W. & Ackerly, D. D. Limiting similarity and functional diversity along environmental gradients. Ecol. Lett. 8, 272–281 (2005).

    Article 

    Google Scholar 

  • Wagg, C., Jansa, J., Schmid, B. & van der Heijden, M. G. A. Belowground biodiversity effects of plant symbionts support aboveground productivity. Ecol. Lett. 14, 1001–1009 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Agerer, R. Exploration types of ectomycorrhizae: a proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11, 107–114 (2001).

    Article 

    Google Scholar 

  • Cheng, L. et al. Mycorrhizal fungi and roots are complementary in foraging within nutrient patches. Ecology 97, 2815–2823 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Wambsganss, J. et al. Tree species mixing causes a shift in fine-root soil exploitation strategies across European forests. Funct. Ecol. 35, 1886–1902 (2021).

    Article 
    CAS 

    Google Scholar 

  • Gerz, M., Guillermo Bueno, C., Ozinga, W. A., Zobel, M. & Moora, M. Niche differentiation and expansion of plant species are associated with mycorrhizal symbiosis. J. Ecol. 106, 254–264 (2018).

    Article 
    CAS 

    Google Scholar 

  • Niklaus, P. A., Baruffol, M., He, J. S., Ma, K. & Schmid, B. Can niche plasticity promote biodiversity–productivity relationships through increased complementarity? Ecology 98, 1104–1116 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Barry, K. E. et al. The future of complementarity: disentangling causes from consequences. Trends Ecol. Evol. 34, 167–180 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Jacobs, L. M., Sulman, B. N., Brzostek, E. R., Feighery, J. J. & Phillips, R. P. Interactions among decaying leaf litter, root litter and soil organic matter vary with mycorrhizal type. J. Ecol. 106, 502–513 (2018).

    Article 
    CAS 

    Google Scholar 

  • Midgley, M. G., Brzostek, E. & Phillips, R. P. Decay rates of leaf litters from arbuscular mycorrhizal trees are more sensitive to soil effects than litters from ectomycorrhizal trees. J. Ecol. 103, 1454–1463 (2015).

    Article 

    Google Scholar 

  • Kumar, A., Phillips, R. P., Scheibe, A., Klink, S. & Pausch, J. Organic matter priming by invasive plants depends on dominant mycorrhizal association. Soil Biol. Biochem. 140, 107645 (2020).

    Article 
    CAS 

    Google Scholar 

  • Tedersoo, L., Bahram, M. & Zobel, M. How mycorrhizal associations drive plant population and community biology. Science 367, eaba1223 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kitajima, K. & Poorter, L. Functional basis for resource niche partitioning by tropical trees. Trop. For. community Ecol. 1936, 160–181 (2008).

  • MacArthur, R. H. Patterns of species diverstiy. Biol. Rev. 40, 510–533 (1965).

    Article 

    Google Scholar 

  • Pellissier, V., Barnagaud, J. Y., Kissling, W. D., Şekercioğlu, Ç. & Svenning, J. C. Niche packing and expansion account for species richness–productivity relationships in global bird assemblages. Glob. Ecol. Biogeogr. 27, 604–615 (2018).

    Article 

    Google Scholar 

  • Huang, Y. et al. Effects of enemy exclusion on biodiversity–productivity relationships in a subtropical forest experiment. J. Ecol. 110, 2167–2178. https://doi.org/10.1111/1365-2745.13940 (2022).

  • Tilman, D. Community invasibility, recruitment limitation, and grassland biodiversity. Ecology 78, 81–92 (1997).

    Article 

    Google Scholar 

  • Feng, Y. et al. Multispecies forest plantations outyield monocultures across a broad range of conditions. Science 376, 865–868 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Harper, J. L. Population biology of plants. (1977).

  • Ewel, J. J. Designing agricultural ecosystems for the humid tropics. Annu. Rev. Ecol. Syst. 17, 245–271 (1986).

    Article 

    Google Scholar 

  • Grossiord, C. Having the right neighbors: how tree species diversity modulates drought impacts on forests. N. Phytol. 228, 42–49 (2020).

    Article 

    Google Scholar 

  • Allen, M. F. Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zo. J. 6, 291–297 (2007).

    Article 

    Google Scholar 

  • Brzostek, E. R. et al. Chronic water stress reduces tree growth and the carbon sink of deciduous hardwood forests. Glob. Chang. Biol. 20, 2531–2539 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Liese, R., Lübbe, T., Albers, N. W. & Meier, I. C. The mycorrhizal type governs root exudation and nitrogen uptake of temperate tree species. Tree Physiol. 38, 83–95 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Linton, M. J., Sperry, J. S. & Williams, D. G. Limits to water transport in Juniperus osteosperma and Pinus edulis: Implications for drought tolerance and regulation of transpiration. Funct. Ecol. 12, 906–911 (1998).

    Article 

    Google Scholar 

  • Johnson, D. M. et al. Co-occurring woody species have diverse hydraulic strategies and mortality rates during an extreme drought. Plant. Cell Environ. 41, 576–588 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lin, G. et al. Mycorrhizal associations of tree species influence soil nitrogen dynamics via effects on soil acid–base chemistry. Glob. Ecol. Biogeogr. 31, 168–182 (2022).

    Article 

    Google Scholar 

  • Read, D. J. Mycorrhizas in ecosystems. Experientia 47, 376–391 (1991).

    Article 

    Google Scholar 

  • Hobbie, S. E. Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol. Evol. 30, 357–363 (2015).

    Article 
    PubMed 

    Google Scholar 

  • De Schrijver, A. et al. Tree species traits cause divergence in soil acidification during four decades of postagricultural forest development. Glob. Chang. Biol. 18, 1127–1140 (2012).

    Article 
    ADS 

    Google Scholar 

  • Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Braghiere, R. K. et al. Modeling global carbon costs of plant nitrogen and phosphorus acquisition. J. Adv. Model. Earth Syst. 14, 1–23 (2022).

    Article 

    Google Scholar 

  • Eisenhauer, N. et al. Biotic interactions as mediators of context-dependent biodiversity-ecosystem functioning relationships. Res. Ideas Outcomes 8, e85873 (2022).

    Article 

    Google Scholar 

  • Fisher, J. B. et al. Tree-mycorrhizal associations detected remotely from canopy spectral properties. Glob. Chang. Biol. 22, 2596–2607 (2016).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 1–10 (2019).

    Article 
    CAS 

    Google Scholar 

  • Burrill, E. A. et al. The forest inventory and analysis database. USDA . Serv. 2, 1026 (2015).

    Google Scholar 

  • Chao, A., Chiu, C.-H. & Jost, L. Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through hill numbers. Annu. Rev. Ecol. Evol. Syst. 45, 297–324 (2014).

    Article 

    Google Scholar 

  • Cleland, D. T. et al. Ecological subregions: Sections and subsections for the conterminous United States. Gen. Tech. Rep. WO-76D (2007).

  • Soudzilovskaia, N. A. et al. FungalRoot: global online database of plant mycorrhizal associations. N. Phytol. 227, 955–966 (2020).

    Article 

    Google Scholar 

  • Gallion, J. et al. Indiana DNR State Forest Properties Report of Continuous Forest Inventory (CFI) Summary of years 2015–2019. 1–25 (2020).

  • Dormann, C. F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628 (2007).

    Article 

    Google Scholar 

  • Craven, D. et al. A cross-scale assessment of productivity–diversity relationships. Glob. Ecol. Biogeogr. 29, 1940–1955 (2020).

    Article 

    Google Scholar 

  • Paquette, A. & Messier, C. The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob. Ecol. Biogeogr. 20, 170–180 (2011).

    Article 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ (2020).

  • Dowle, M. & Srinivasan, A. data.table: Extension of ‘data.frame‘. R package version 1.14.2 (2021).

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.

  • Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package version 0.4.0 (2020).

  • Dunnington, D. ggspatial: Spatial Data Framework for ggplot2. R package version 1.1.5 (2021).

  • Robert, J. Hijmans. raster: Geographic Data Analysis and Modeling. R package version 3.5-2 (2021).

  • Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A Grammar of Data Manipulation. R package version 1.0.8 (2022).

  • Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar 

  • Lefcheck, J. S. piecewiseSEM: piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    Article 

    Google Scholar 

  • Luo, S. et al. High productivity in forests with mixed mycorrhizal strategies. Figshare https://doi.org/10.6084/m9.figshare.22060238. (2023).


  • Source: Ecology - nature.com

    Larval rockfish growth and survival in response to anomalous ocean conditions

    When legislation to protect wildlife becomes a problem