in

Human footprint is associated with shifts in the assemblages of major vector-borne diseases

  • Ellis, E. C. et al. People have shaped most of terrestrial nature for at least 12,000 years. Proc. Natl. Acad. Sci. USA 118, e2023483118 (2021).

    Article 
    CAS 

    Google Scholar 

  • Williams, B. A. et al. Change in terrestrial human footprint drives continued loss of intact ecosystems. One Earth 3, 371–382 (2020).

    Article 

    Google Scholar 

  • Kuipers, K. J. J. et al. Habitat fragmentation amplifies threats from habitat loss to mammal diversity across the world’s terrestrial ecoregions. One Earth 4, 1505–1513 (2021).

    Article 

    Google Scholar 

  • Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).

    Article 
    CAS 

    Google Scholar 

  • Watson, J. E. M. & Venter, O. Mapping the continuum of humanity’s footprint on land. One Earth 1, 175–180 (2019).

    Article 

    Google Scholar 

  • Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

    Article 
    CAS 

    Google Scholar 

  • Glidden, C. K. et al. Human-mediated impacts on biodiversity and the consequences for zoonotic disease spillover. Curr. Biol. 31, R1342–R1361 (2021).

    Article 
    CAS 

    Google Scholar 

  • Grobbelaar, A. A. et al. Resurgence of yellow fever in Angola, 2015-2016. Emerg. Infect. Dis. 22, 1854–1855 (2016).

    Article 

    Google Scholar 

  • Gubler, D. J. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol. 10, 100–103 (2002).

    Article 
    CAS 

    Google Scholar 

  • Hotez, P. J. Neglected tropical diseases in the Anthropocene: the cases of Zika, Ebola, and other infections. PLoS Negl. Trop. Dis. 10, e0004648 (2016).

    Article 

    Google Scholar 

  • Paixão, E. S., Teixeira, M. G. & Rodrigues, L. C. Zika, chikungunya and dengue: the causes and threats of new and re-emerging arboviral diseases. BMJ Glob. Health 3, e000530 (2018).

    Article 

    Google Scholar 

  • Rosenberg, R. et al. Vital signs: trends in reported vectorborne disease cases – United States and territories, 2004-2016. Morb. Mortal. Wk. Rep. 67, 496–501 (2018).

    Article 

    Google Scholar 

  • World Malaria Report 2020: 20 Years of Global Progress and Challenges (WHO, 2020); https://apps.who.int/iris/handle/10665/337660

  • Lambin, E. F., Tran, A., Vanwambeke, S. O., Linard, C. & Soti, V. Pathogenic landscapes: interactions between land, people, disease vectors, and their animal hosts. Int. J. Health Geogr. 9, 54 (2010).

    Article 

    Google Scholar 

  • Shocket, M. S. et al. Transmission of West Nile and five other temperate mosquito-borne viruses peaks at temperatures between 23 °C and 26 °C. eLife 9, e58511 (2020).

    Article 
    CAS 

    Google Scholar 

  • Kilpatrick, A. M. & Randolph, S. E. Drivers, dynamics, and control of emerging vector-borne zoonotic diseases. Lancet 380, 1946–1955 (2012).

    Article 

    Google Scholar 

  • Franklinos, L. H. V., Jones, K. E., Redding, D. W. & Abubakar, I. The effect of global change on mosquito-borne disease. Lancet Infect. Dis. 19, e302–e312 (2019).

    Article 

    Google Scholar 

  • Keys, P. W., Barnes, E. A. & Carter, N. H. A machine-learning approach to human footprint index estimation with applications to sustainable development. Environ. Res. Lett. 16, 044061 (2021).

    Article 

    Google Scholar 

  • Venter, O. et al. Global terrestrial human footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).

    Article 

    Google Scholar 

  • Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. M. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).

    Article 

    Google Scholar 

  • Hill, J. E., DeVault, T. L., Wang, G. & Belant, J. L. Anthropogenic mortality in mammals increases with the human footprint. Front. Ecol. Environ. 18, 13–18 (2020).

    Article 

    Google Scholar 

  • Elsen, P. R., Monahan, W. B. & Merenlender, A. M. Topography and human pressure in mountain ranges alter expected species responses to climate change. Nat. Commun. 11, 1974 (2020).

    Article 
    CAS 

    Google Scholar 

  • Su, J., Yin, H. & Kong, F. Ecological networks in response to climate change and the human footprint in the Yangtze River Delta urban agglomeration, China. Landsc. Ecol. 36, 2095–2112 (2021).

    Article 

    Google Scholar 

  • Hansen, A. J. et al. A policy-driven framework for conserving the best of Earth’s remaining moist tropical forests. Nat. Ecol. Evol. 4, 1377–1384 (2020).

    Article 

    Google Scholar 

  • Dos Santos, C. V. B., da Paixão Sevá, A., Werneck, G. L. & Struchiner, C. J. Does deforestation drive visceral leishmaniasis transmission? A causal analysis. Proc. R. Soc. B 288, 20211537 (2021).

    Article 

    Google Scholar 

  • MacDonald, A. J. & Mordecai, E. A. Amazon deforestation drives malaria transmission, and malaria burden reduces forest clearing. Proc. Natl. Acad. Sci. USA 116, 22212–22218 (2019).

    Article 
    CAS 

    Google Scholar 

  • Honório, N. A. et al. Dispersal of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in an urban endemic dengue area in the State of Rio de Janeiro, Brazil. Mem. Inst. Oswaldo Cruz 98, 191–198 (2003).

    Article 

    Google Scholar 

  • Rodrigues, N. B. et al. Brazilian Aedes aegypti as a competent vector for multiple complex arboviral coinfections. J. Infect. Dis. 224, 101–108 (2021).

    Article 

    Google Scholar 

  • Weinstein, J. S., Leslie, T. F. & von Fricken, M. E. Spatial associations between land use and infectious disease: Zika virus in Colombia. Int. J. Environ. Res. Public Health 17, E1127 (2020).

    Article 

    Google Scholar 

  • Heukelbach, J., Alencar, C. H., Kelvin, A. A., de Oliveira, W. K. & Pamplona de Góes Cavalcanti, L. Zika virus outbreak in Brazil. J. Infect. Dev. Countr. 10, 116–120 (2016).

    Article 

    Google Scholar 

  • Lowe, R. et al. The Zika virus epidemic in Brazil: from discovery to future implications. Int. J. Environ. Res. Public Health 15, E96 (2018).

    Article 

    Google Scholar 

  • Alves, M. C. G. P., de Matos, M. R., de Lourdes Reichmann, M. & Dominguez, M. H. Estimation of the dog and cat population in the State of São Paulo. Rev. Saude Publica 39, 891–897 (2005).

    Article 

    Google Scholar 

  • Mordecai, E. A. et al. Thermal biology of mosquito-borne disease. Ecol. Lett. 22, 1690–1708 (2019).

    Article 

    Google Scholar 

  • Gage, K. L., Burkot, T. R., Eisen, R. J. & Hayes, E. B. Climate and vectorborne diseases. Am. J. Prev. Med. 35, 436–450 (2008).

    Article 

    Google Scholar 

  • Doenças e Agravos de Notificação – 2007 em Diante (SINAN) (DATASUS, Ministério da Saúde do Brasil, 2021); https://datasus.saude.gov.br/acesso-a-informacao/doencas-e-agravos-de-notificacao-de-2007-em-diante-sinan/

  • SIVEP – MALÁRIA Notificação de Casos (Ministério da Saúde do Brasil, 2021); http://200.214.130.44/sivep_malaria/

  • R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2020); https://www.R-project.org/

  • Sorichetta, A. et al. High-resolution gridded population datasets for Latin America and the Caribbean in 2010, 2015, and 2020. Sci. Data 2, 150045 (2015).

    Article 

    Google Scholar 

  • Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).

    Article 

    Google Scholar 

  • Souza at. al. Reconstructing three decades of land use and land cover changes in Brazilian biomes with Landsat archive and Earth Engine. Remote Sens. 12, https://doi.org/10.3390/rs12172735 (2020).

  • Fountain-Jones, N. M. et al. How to make more from exposure data? An integrated machine learning pipeline to predict pathogen exposure. J. Anim. Ecol. 88, 1447–1461 (2019).

    Article 

    Google Scholar 

  • Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article 

    Google Scholar 

  • Genuer, R., Poggi, J.-M. & Tuleau-Malot, C. Variable selection using random forests. Pattern Recogn. Lett. 31, 2225–2236 (2010).

    Article 

    Google Scholar 

  • Wei, T. et al. Package ‘corrplot’. Statistician 56, e24 (2017).

    Google Scholar 

  • Ratner, B. The correlation coefficient: its values range between +1/−1, or do they? J. Target. Meas. Anal. Mark. 17, 139–142 (2009).

    Article 

    Google Scholar 

  • Ishwaran, H. & Kogalur, U. B. Fast unified random forests for survival, regression, and classification (RF-SRC) (2019).

  • O’Brien, R. & Ishwaran, H. A random forests quantile classifier for class imbalanced data. Pattern Recognit. 90, 232–249 (2019).

    Article 

    Google Scholar 

  • Silge, J. & Mahoney, M. spatialsample: spatial resampling infrastructure. R version 0.2.1 (2023).

  • Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504–507 (2013).

    Article 
    CAS 

    Google Scholar 

  • Weaver, S. C. & Forrester, N. L. Chikungunya: evolutionary history and recent epidemic spread. Antivir. Res. 120, 32–39 (2015).

    Article 
    CAS 

    Google Scholar 

  • Puntasecca, C. J., King, C. H. & LaBeaud, A. D. Measuring the global burden of chikungunya and Zika viruses: a systematic review. PLoS Negl. Trop. Dis. 15, e0009055 (2021).

    Article 

    Google Scholar 

  • Baeza, A., Santos-Vega, M., Dobson, A. P. & Pascual, M. The rise and fall of malaria under land-use change in frontier regions. Nat. Ecol. Evol. 1, 108 (2017).

    Article 

    Google Scholar 

  • de Araújo Pedrosa, F. & de Alencar Ximenes, R. A. Sociodemographic and environmental risk factors for American cutaneous leishmaniasis (ACL) in the State of Alagoas, Brazil. Am. J. Trop. Med. Hyg. 81, 195–201 (2009).

    Article 

    Google Scholar 

  • Gonçalves, N. V. et al. Cutaneous leishmaniasis: spatial distribution and environmental risk factors in the state of Pará, Brazilian Eastern Amazon. J. Infect. Dev. Countr. 13, 939–944 (2019).

    Article 

    Google Scholar 

  • Leishmaniasis (Pan American Health Organization, 2022); https://www.paho.org/en/topics/leishmaniasis

  • Harhay, M. O., Olliaro, P. L., Costa, D. L. & Costa, C. H. N. Urban parasitology: visceral leishmaniasis in Brazil. Trends Parasitol. 27, 403–409 (2011).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Larval rockfish growth and survival in response to anomalous ocean conditions

    When legislation to protect wildlife becomes a problem