in

Impact of meltwater flow intensity on the spatiotemporal heterogeneity of microbial mats in the McMurdo Dry Valleys, Antarctica

[adace-ad id="91168"]
  • Doran PT, Lyons WB, McKnight DM. Life in Antarctic deserts and other cold dry environments: astrobiological analogs. Cambridge: Cambridge University Press; 2010.

  • Barrett JE, Virginia RA, Lyons WB, McKnight DM, Priscu JC, Doran PT, et al. Biogeochemical stoichiometry of Antarctic dry valley ecosystems. J Geophys Res Biogeosci. 2007;112:1–12.

  • Doran PT, McKay CP, Clow GD, Dana GL, Fountain AG, Nylen T, et al. Valley floor climate observations from the McMurdo Dry Valleys, Antarctica, 1986–2000. J Geophys Res Atmosph. 2002;107:ACL 13-1-ACL -2.

  • Fountain AG, Nylen TH, Monaghan A, Basagic HJ, Bromwich D. Snow in the McMurdo dry valleys, Antarctica. Int J Climatol J R Meteorol Soc. 2010;30:633–42.

    Article 

    Google Scholar 

  • Hawes I, Schwarz AM. Absorption and utilization of irradiance by cyanobacterial mats in two ice‐covered antarctic lakes with contrasting light climates. J Phycol. 2001;37:5–15.

    Article 
    CAS 

    Google Scholar 

  • McKnight DM, Niyogi DK, Alger AS, Bomblies A, Conovitz PA, Tate CM. Dry valley streams in Antarctica: ecosystems waiting for water. Bioscience. 1999;49:985–95.

    Article 

    Google Scholar 

  • Toner JD, Sletten RS, Prentice ML. Soluble salt accumulations in Taylor Valley, Antarctica: implications for paleolakes and Ross Sea Ice Sheet dynamics. J Geophys Res Earth Surface. 2013;118:198–215.

    Article 
    CAS 

    Google Scholar 

  • Doran PT, Priscu JC, Lyons WB, Walsh JE, Fountain AG, McKnight DM, et al. Antarctic climate cooling and terrestrial ecosystem response. Nature. 2002;415:517–20.

    Article 
    CAS 

    Google Scholar 

  • Gooseff MN, Barrett JE, Adams BJ, Doran PT, Fountain AG, Lyons WB, et al. Decadal ecosystem response to an anomalous melt season in a polar desert in Antarctica. Nat Ecol Evolut. 2017;1:1334–8.

    Article 

    Google Scholar 

  • Obryk MK, Doran PT, Fountain AG, Myers M, McKay CP. Climate from the McMurdo dry valleys, Antarctica, 1986–2017: Surface air temperature trends and redefined summer season. J Geophys Res Atmosph. 2020;125:e2019JD032180.

    Article 

    Google Scholar 

  • Nielsen UN, Wall DH, Adams BJ, Virginia RA, Ball BA, Gooseff MN, et al. The ecology of pulse events: insights from an extreme climatic event in a polar desert ecosystem. Ecosphere. 2012;3:1–15.

    Article 

    Google Scholar 

  • Fountain AG, Saba G, Adams B, Doran P, Fraser W, Gooseff M, et al. The impact of a large-scale climate event on Antarctic ecosystem processes. Bioscience. 2016;66:848–63.

    Article 

    Google Scholar 

  • Andriuzzi W, Adams B, Barrett J, Virginia R, Wall D. Observed trends of soil fauna in the Antarctic Dry Valleys: early signs of shifts predicted under climate change. Ecology. 2018;99:312–21.

    Article 
    CAS 

    Google Scholar 

  • Adams BJ, Wall DH, Virginia RA, Broos E, Knox MA. Ecological biogeography of the terrestrial nematodes of Victoria Land, Antarctica. ZooKeys. 2014;419:29.

    Article 

    Google Scholar 

  • Cary SC, McDonald IR, Barrett JE, Cowan DA. On the rocks: the microbiology of Antarctic Dry Valley soils. Nat Rev Microbiol. 2010;8:129–38.

    Article 
    CAS 

    Google Scholar 

  • Jungblut AD, Hawes I, Mountfort D, Hitzfeld B, Dietrich DR, Burns BP, et al. Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environ Microbiol. 2005;7:519–29.

    Article 
    CAS 

    Google Scholar 

  • Kohler TJ, Stanish LF, Crisp SW, Koch JC, Liptzin D, Baeseman JL, et al. Life in the main channel: long-term hydrologic control of microbial mat abundance in McMurdo Dry Valley streams, Antarctica. Ecosystems. 2015;18:310–27.

    Article 
    CAS 

    Google Scholar 

  • Sommers P, Darcy JL, Porazinska DL, Gendron E, Fountain AG, Zamora F, et al. Comparison of microbial communities in the sediments and water columns of frozen cryoconite holes in the McMurdo Dry Valleys, Antarctica. Front Microbiol. 2019;10:65.

    Article 

    Google Scholar 

  • Wharton RA Jr, Parker BC, Simmons GM Jr. Distribution, species composition and morphology of algal mats in Antarctic dry valley lakes. Phycologia. 1983;22:355–65.

    Article 

    Google Scholar 

  • Esposito R, Spaulding S, McKnight DM, Van de Vijver B, Kopalová K, Lubinski D, et al. Inland diatoms from the McMurdo dry valleys and James Ross Island, Antarctica. Botany. 2008;86:1378–92.

    Article 

    Google Scholar 

  • Van Horn DJ, Wolf CR, Colman DR, Jiang X, Kohler TJ, McKnight DM, et al. Patterns of bacterial biodiversity in the glacial meltwater streams of the McMurdo Dry Valleys, Antarctica. FEMS Microbiol Ecol. 2016;92:fiw148.

    Article 

    Google Scholar 

  • Wlostowski AN, Gooseff MN, McKnight DM, Jaros C, Lyons WB. Patterns of hydrologic connectivity in the McMurdo Dry Valleys, Antarctica: a synthesis of 20 years of hydrologic data. Hydrol Proces. 2016;30:2958–75.

    Article 

    Google Scholar 

  • McKnight DM, Tate C. Canada stream: a glacial meltwater stream in Taylor Valley, south Victoria Land, Antarctica. J N Am Benthol Soc. 1997;16:14–7.

    Article 

    Google Scholar 

  • Davey MC, Clarke KJ. Fine structure of a terrestrial cyanobacterial mat from Antarctica 1. J Phycol. 1992;28:199–202.

    Article 

    Google Scholar 

  • Vincent WF. Cyanobacterial dominance in the polar regions. The ecology of cyanobacteria: Springer, Dordrecht; 2000. p. 321–40.

  • McKnight DM, Tate C, Andrews E, Niyogi D, Cozzetto K, Welch K, et al. Reactivation of a cryptobiotic stream ecosystem in the McMurdo Dry Valleys, Antarctica: a long-term geomorphological experiment. Geomorphology. 2007;89:186–204.

    Article 

    Google Scholar 

  • Varin T, Lovejoy C, Jungblut AD, Vincent WF, Corbeil J. Metagenomic analysis of stress genes in microbial mat communities from Antarctica and the High Arctic. Appl Environ Microbiol. 2012;78:549–59.

    Article 

    Google Scholar 

  • Alger A. Ecological processes in a cold desert ecosystem: the abundance and species distribution of algal mats in glacial meltwater streams in Taylor Valley, Antarctica. Occasional paper/University of Colorado; 1997.

  • Marizcurrena JJ, Cerdá MF, Alem D, Castro-Sowinski S. Living with pigments: the colour palette of Antarctic life. The ecological role of micro-organisms in the antarctic environment. Springer, Cham; 2019. p. 65–82.

  • Vincent W, Downes M, Castenholz R, Howard-Williams C. Community structure and pigment organisation of cyanobacteria-dominated microbial mats in Antarctica. Eur J Phycol. 1993;28:213–21.

    Article 

    Google Scholar 

  • Howard‐Williams C, Vincent CL, Broady PA, Vincent WF. Antarctic stream ecosystems: variability in environmental properties and algal community structure. Int Revue Gesamten Hydrobiol Hydrogr. 1986;71:511–44.

    Article 

    Google Scholar 

  • Esposito R, Horn S, McKnight DM, Cox M, Grant M, Spaulding S, et al. Antarctic climate cooling and response of diatoms in glacial meltwater streams. Geophys Res Lett. 2006;33:L07406.1–L07406.4.

  • Stanish LF, Nemergut DR, McKnight DM. Hydrologic processes influence diatom community composition in Dry Valley streams. J N Am Benthol Soc. 2011;30:1057–73.

    Article 

    Google Scholar 

  • Cullis JD, Stanish LF, McKnight DM. Diel flow pulses drive particulate organic matter transport from microbial mats in a glacial meltwater stream in the McMurdo Dry Valleys. Water Resour Res. 2014;50:86–97.

    Article 
    CAS 

    Google Scholar 

  • Amaral-Zettler LA, McCliment EA, Ducklow HW, Huse SM. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PloS ONE. 2009;4:e6372.

    Article 

    Google Scholar 

  • Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.

    Article 
    CAS 

    Google Scholar 

  • Stoeck T, Bass D, Nebel M, Christen R, Jones MD, Breiner HW, et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol Ecol. 2010;19:21–31.

    Article 
    CAS 

    Google Scholar 

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.

    Article 
    CAS 

    Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.

    Article 
    CAS 

    Google Scholar 

  • Bertrand EM, McCrow JP, Moustafa A, Zheng H, McQuaid JB, Delmont TO, et al. Phytoplankton–bacterial interactions mediate micronutrient colimitation at the coastal Antarctic sea ice edge. Proc Natl Acad Sci. 2015;112:9938–43.

    Article 
    CAS 

    Google Scholar 

  • Dupont CL, McCrow JP, Valas R, Moustafa A, Walworth N, Goodenough U, et al. Genomes and gene expression across light and productivity gradients in eastern subtropical Pacific microbial communities. ISME J. 2015;9:1076–92.

    Article 
    CAS 

    Google Scholar 

  • Schmieder R, Lim YW, Edwards R. Identification and removal of ribosomal RNA sequences from metatranscriptomes. Bioinformatics. 2012;28:433–5.

    Article 
    CAS 

    Google Scholar 

  • Rho M, Tang H, Ye Y. FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acids Res. 2010;38:e191.

    Article 

    Google Scholar 

  • Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012;40:D109–14.

    Article 
    CAS 

    Google Scholar 

  • Finn R, Mistry J, Tate J, Coggill P, Heger A. Pfam: the protein families database. Nucleic Acids Res. 2014;42:222–30.

  • Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29–37.

    Article 
    CAS 

    Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.

    Article 
    CAS 

    Google Scholar 

  • Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;9:1–13.

    Article 

    Google Scholar 

  • Kolody B, McCrow J, Allen LZ, Aylward F, Fontanez K, Moustafa A, et al. Diel transcriptional response of a California Current plankton microbiome to light, low iron, and enduring viral infection. ISME J. 2019;13:2817–33.

    Article 
    CAS 

    Google Scholar 

  • Bolhuis H, Stal LJ. Analysis of bacterial and archaeal diversity in coastal microbial mats using massive parallel 16S rRNA gene tag sequencing. ISME J. 2011;5:1701–12.

    Article 
    CAS 

    Google Scholar 

  • Sorokovikova EG, Belykh OI, Gladkikh AS, Kotsar OV, Tikhonova IV, Timoshkin OA, et al. Diversity of cyanobacterial species and phylotypes in biofilms from the littoral zone of Lake Baikal. J Microbiol. 2013;51:757–65.

    Article 
    CAS 

    Google Scholar 

  • Blazewicz SJ, Barnard RL, Daly RA, Firestone MK. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J. 2013;7:2061–8.

    Article 
    CAS 

    Google Scholar 

  • Kohler TJ, Stanish LF, Liptzin D, Barrett JE, McKnight DM. Catch and release: Hyporheic retention and mineralization of N‐fixing Nostoc sustains downstream microbial mat biomass in two polar desert streams. Limnol Oceanogr Lett. 2018;3:357–64.

    Article 
    CAS 

    Google Scholar 

  • Coyne KJ, Parker AE, Lee CK, Sohm JA, Kalmbach A, Gunderson T, et al. The distribution and relative ecological roles of autotrophic and heterotrophic diazotrophs in the McMurdo Dry Valleys, Antarctica. FEMS Microbiol Ecol. 2020;96:fiaa010.

    Article 
    CAS 

    Google Scholar 

  • McKnight DM, Runkel RL, Tate CM, Duff JH, Moorhead DL. Inorganic N and P dynamics of Antarctic glacial meltwater streams as controlled by hyporheic exchange and benthic autotrophic communities. J N Am Benthol Soc. 2004;23:171–88.

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1899/0887-3593(2004)0232.0.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1899%2F0887-3593%282004%29023%3C0171%3AINAPDO%3E2.0.CO%3B2″ aria-label=”Article reference 55″ data-doi=”10.1899/0887-3593(2004)0232.0.CO;2″>Article 

    Google Scholar 

  • Howard-Williams C, Priscu JC, Vincent WF. Nitrogen dynamics in two Antarctic streams. Hydrobiologia. 1989;172:51–61.

    Article 
    CAS 

    Google Scholar 

  • Hopkins D, Sparrow A, Elberling B, Gregorich E, Novis P, Greenfield L, et al. Carbon, nitrogen and temperature controls on microbial activity in soils from an Antarctic dry valley. Soil Biol Biochem. 2006;38:3130–40.

    Article 
    CAS 

    Google Scholar 

  • Singley JG, Gooseff MN, McKnight DM, Hinckley E. The Role of Hyporheic Connectivity in Determining Nitrogen Availability: Insights from an Intermittent Antarctic Stream. J Geophys Res Biogeosci. 2021;126:e2021JG006309.

    Article 
    CAS 

    Google Scholar 

  • Raymond-Bouchard I, Whyte LG. From transcriptomes to metatranscriptomes: cold adaptation and active metabolisms of psychrophiles from cold environments. Psychrophiles: from biodiversity to biotechnology. Springer, Cham; 2017. p. 437–57.

  • Králová S. Role of fatty acids in cold adaptation of Antarctic psychrophilic Flavobacterium spp. Syst Appl Microbiol. 2017;40:329–33.

    Article 

    Google Scholar 

  • Chua MJ, Campen RL, Wahl L, Grzymski JJ, Mikucki JA. Genomic and physiological characterization and description of Marinobacter gelidimuriae sp. nov., a psychrophilic, moderate halophile from Blood Falls, an Antarctic subglacial brine. FEMS Microbiol Ecol. 2018;94:fiy021.

    Article 

    Google Scholar 

  • Gururani MA, Venkatesh J, Tran LSP. Regulation of photosynthesis during abiotic stress-induced photoinhibition. Mol Plant. 2015;8:1304–20.

    Article 
    CAS 

    Google Scholar 

  • Murata N, Takahashi S, Nishiyama Y, Allakhverdiev SI. Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta Bioenerg. 2007;1767:414–21.

    Article 
    CAS 

    Google Scholar 

  • Seifert GJ. Fascinating fasciclins: a surprisingly widespread family of proteins that mediate interactions between the cell exterior and the cell surface. Int J Mol Sci. 2018;19:1628.

    Article 

    Google Scholar 

  • Meng J, Hu B, Yi G, Li X, Chen H, Wang Y, et al. Genome-wide analyses of banana fasciclin-like AGP genes and their differential expression under low-temperature stress in chilling sensitive and tolerant cultivars. Plant Cell Rep. 2020;39:693–708.

    Article 
    CAS 

    Google Scholar 

  • Rai R, Singh S, Chatterjee A, Rai KK, Rai S, Rai L. All4894 encoding a novel fasciclin (FAS-1 domain) protein of Anabaena sp. PCC7120 revealed the presence of a thermostable β-glucosidase. Algal Res. 2020;51:102036.

    Article 

    Google Scholar 

  • Knight C, DeVries A. Ice growth in supercooled solutions of a biological “antifreeze”, AFGP 1–5: An explanation in terms of adsorption rate for the concentration dependence of the freezing point. Phys Chem Chem Phys. 2009;11:5749–61.

    Article 
    CAS 

    Google Scholar 

  • Kubota N. Effects of cooling rate, annealing time and biological antifreeze concentration on thermal hysteresis reading. Cryobiology. 2011;63:198–209.

    Article 
    CAS 

    Google Scholar 

  • Takamichi M, Nishimiya Y, Miura A, Tsuda S. Effect of annealing time of an ice crystal on the activity of type III antifreeze protein. FEBS J. 2007;274:6469–76.

    Article 
    CAS 

    Google Scholar 

  • Vance TD, Bayer‐Giraldi M, Davies PL, Mangiagalli M. Ice‐binding proteins and the ‘domain of unknown function’3494 family. FEBS J. 2019;286:855–73.

    Article 
    CAS 

    Google Scholar 

  • Bar Dolev M, Braslavsky I, Davies PL. Ice-binding proteins and their function. Ann Rev Biochem. 2016;85:515–42.

    Article 
    CAS 

    Google Scholar 

  • Niederberger TD, Bottos EM, Sohm JA, Gunderson T, Parker A, Coyne KJ, et al. Rapid microbial dynamics in response to an induced wetting event in Antarctic Dry Valley soils. Front Microbiol. 2019;10:621.

    Article 

    Google Scholar 

  • Lee KC, Caruso T, Archer SD, Gillman LN, Lau MC, Cary SC, et al. Stochastic and deterministic effects of a moisture gradient on soil microbial communities in the McMurdo Dry Valleys of Antarctica. Front Microbiol. 2018;9:2619.

    Article 

    Google Scholar 

  • De Scally S, Makhalanyane TP, Frossard A, Hogg I, Cowan DA. Antarctic microbial communities are functionally redundant, adapted and resistant to short term temperature perturbations. Soil Biol Biochem. 2016;103:160–70.

    Article 

    Google Scholar 

  • Zeglin LH, Dahm CN, Barrett JE, Gooseff MN, Fitpatrick SK, Takacs-Vesbach CD. Bacterial community structure along moisture gradients in the parafluvial sediments of two ephemeral desert streams. Microbial Ecol. 2011;61:543–56.

    Article 

    Google Scholar 

  • Ramoneda J, Hawes I, Pascual-García AJ, Mackey TY, Sumner DD, Jungblut A. Importance of environmental factors over habitat connectivity in shaping bacterial communities in microbial mats and bacterioplankton in an Antarctic freshwater system. FEMS Microbiol Ecol. 2021;97:fiab044.

    Article 
    CAS 

    Google Scholar 

  • Levy JS, Fountain AG, Obryk M, Telling J, Glennie C, Pettersson R, et al. Decadal topographic change in the McMurdo Dry Valleys of Antarctica: Thermokarst subsidence, glacier thinning, and transfer of water storage from the cryosphere to the hydrosphere. Geomorphology. 2018;323:80–97.

    Article 

    Google Scholar 

  • Fountain AG, Levy JS, Gooseff MN, Van Horn D. The McMurdo Dry Valleys: a landscape on the threshold of change. Geomorphology. 2014;225:25–35.

    Article 

    Google Scholar 

  • Barrett J, Virginia R, Wall D, Doran P, Fountain A, Welch K, et al. Persistent effects of a discrete warming event on a polar desert ecosystem. Glob Change Biol. 2008;14:2249–61.

    Article 

    Google Scholar 

  • Gooseff MN, McKnight DM, Doran P, Fountain AG, Lyons WB. Hydrological connectivity of the landscape of the McMurdo Dry Valleys, Antarctica. Geogr Compass. 2011;5:666–81.

    Article 

    Google Scholar 

  • Vick-Majors TJ, Priscu JC, Amaral-Zettler LA. Modular community structure suggests metabolic plasticity during the transition to polar night in ice-covered Antarctic lakes. ISME J. 2014;8:778–89.

    Article 
    CAS 

    Google Scholar 

  • Bielewicz S, Bell E, Kong W, Friedberg I, Priscu JC, Morgan-Kiss RM. Protist diversity in a permanently ice-covered Antarctic lake during the polar night transition. ISME J. 2011;5:1559–64.

    Article 

    Google Scholar 

  • Vick TJ, Priscu JC. Bacterioplankton productivity in lakes of the Taylor Valley, Antarctica, during the polar night transition. Aquat Microbial Ecol. 2012;68:77–90.

    Article 

    Google Scholar 

  • Morgan‐Kiss R, Lizotte M, Kong W, Priscu J. Photoadaptation to the polar night by phytoplankton in a permanently ice‐covered Antarctic lake. Limnolo Oceanogr. 2016;61:3–13.

    Article 

    Google Scholar 

  • Chan Y, Van Nostrand JD, Zhou J, Pointing SB, Farrell RL. Functional ecology of an Antarctic dry valley. Proc Natl Acad Sci. 2013;110:8990–5.

    Article 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Schooling behavior driven complexities in a fear-induced prey–predator system with harvesting under deterministic and stochastic environments

    Multifunctionality of temperate alley-cropping agroforestry outperforms open cropland and grassland