in

Impact of Pacific Ocean heatwaves on phytoplankton community composition

[adace-ad id="91168"]
  • Di Lorenzo, E. & Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change 6, 1042–1047 (2016).

    Article 

    Google Scholar 

  • Bond, N. A., Cronin, M. F., Freeland, H. & Mantua, N. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 42, 3414–3420 (2015).

    Article 

    Google Scholar 

  • Blunden, J. & Arndt, D. S. State of the Climate in 2015. Bull. Am. Meteorol. Soc. 97, s1–s275 (2016).

    Article 

    Google Scholar 

  • Santoso, A., Mcphaden, M. J. & Cai, W. The Defining Characteristics of ENSO Extremes and the Strong 2015/2016 El Niño. Rev. Geophys. 55, 1079–1129 (2017).

    Article 

    Google Scholar 

  • Amaya, D. J., Miller, A. J., Xie, S.-P. & Kosaka, Y. Physical drivers of the summer 2019 North Pacific marine heatwave. Nat. Commun. 11. https://doi.org/10.1038/s41467-020-15820-w (2020).

  • Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).

  • Laufkötter, C., Zscheischler, J. & Frölicher, T. L. High-impact marine heatwaves attributable to human-induced global warming. Science 369, 1621–1625 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Piatt, J. F. et al. Extreme mortality and reproductive failure of common murres resulting from the northeast Pacific marine heatwave of 2014-2016. PLOS ONE 15, 1–32 (2020).

    Article 

    Google Scholar 

  • Savage, K. Alaska and British Columbia large whale unusual mortality event summary report. NOAA Affiliate Protected Resources Division, NOAA Fisheries Juneau, AK. https://repository.library.noaa.gov/view/noaa/17715 (2017).

  • Cavole, L. M. et al. Biological Impacts of the 2013-2015 Warm-Water Anomaly in the Northeast Pacific: Winners, Losers, and the Future. Oceanography 29, 273–285 (2016).

    Article 

    Google Scholar 

  • Barbeaux, S. et al. Chapter 2: assessment of the pacific cod stock in the Gulf of Alaska. North Pacific Fish Manag. Counc. Gulf Alaska Stock Assess. Fish Eval. Rep. 140. https://archive.afsc.noaa.gov/refm/docs/2019/GOApcod.pdf (2019).

  • Arimitsu, M. L. et al. Heatwave-induced synchrony within forage fish portfolio disrupts energy flow to top pelagic predators. Glob. Change Biol. 27, 1859–1878 (2021).

    Article 
    CAS 

    Google Scholar 

  • Leising, A. W. et al. State of the California Current 2014-15: Impacts of the Warm-Water “Blob”. CalCOFI Rep. 56, 31–68 (2015).

    Google Scholar 

  • Chandler, P. & Yoo, S. Marine Ecosystems of the North Pacific Ocean 2009-2016: Synthesis Report. PICES Spec. Publ. 7, 1–82 (2021).

    Google Scholar 

  • Peterson, W. et al. Ocean Ecosystem Indicators of Salmon Marine Survival in the Northern California Current. NOAA Northwest Fishery Science Center1-94. http://www.nwfsc.noaa.gov/research/divisions/fe/estuarine/oeip/documents/Peterson_etal_2015.pdf (2015).

  • Volk, T. & Hoffert, M. Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. In Sundquist, E. & Broecker, W. (eds.) The carbon cycle and atmospheric CO2 : natural variations Archean to present. Chapman conference papers, 1984, 99–110 (American Geophysical Union; Geophysical Monograph 32, 1985).

  • Whitney, F. A. Anomalous winter winds decrease 2014 transition zone productivity in the NE Pacific. Geophys. Res. Lett. 42, 428–431 (2015).

    Article 

    Google Scholar 

  • McCabe, R. M. et al. An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophys. Res. Lett. 43, 10366–10376 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Du, X., Peterson, W., Fisher, J., Hunter, M. & Peterson, J. Initiation and Development of a Toxic and Persistent Pseudo-nitzschia Bloom off the Oregon Coast in Spring/Summer 2015. PLOS ONE 11, 1–17 (2016).

    Article 

    Google Scholar 

  • Du, X. & Peterson, W. T. Phytoplankton community structure in 2011-2013 compared to the extratropical warming event of 2014-2015. Geophys. Res. Lett. 45, 1534–1540 (2018).

    Article 

    Google Scholar 

  • Peña, M. AandNemcek,NandRobert,M. Phytoplankton responses to the 2014-2016 warming anomaly in the northeast subarctic Pacific Ocean. Limnol. Oceanogr. 64, 515–525 (2019).

    Article 

    Google Scholar 

  • Barth, A., Walter, R. K., Robbins, I. & Pasulka, A. Seasonal and interannual variability of phytoplankton abundance and community composition on the Central Coast of California. Mar. Ecol. Prog. Ser. 637, 29–43 (2020).

    Article 
    CAS 

    Google Scholar 

  • Batten, S. D., Ostle, C., Hélaouët, P. & Walne, A. W. Responses of Gulf of Alaska plankton communities to a marine heat wave. Deep Sea Res. Part II: Topical Stud. Oceanogr. 195, 105002 (2022).

    Article 

    Google Scholar 

  • Johnstone, J. A. & Mantua, N. J. Atmospheric controls on northeast Pacific temperature variability and change, 1900–2012. Proc. Natl Acad. Sci. 111, 14360–14365 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gregg, W. W. & Rousseaux, C. S. Global ocean primary production trends in the modern ocean color satellite record (1998–2015). Environ. Res. Lett. 14, 124011 (2019).

    Article 
    CAS 

    Google Scholar 

  • Hamme, R. C. et al. Volcanic ash fuels anomalous plankton bloom in subarctic northeast Pacific. Geophys. Res. Lett. 37. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2010GL044629. https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2010GL044629 (2010).

  • Rousseaux, C. S. & Gregg, W. W. Climate variability and phytoplankton composition in the Pacific Ocean. J. Geophys. Res. Oceans 117. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2012JC008083. https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2012JC008083 (2012).

  • Lewing, J. Silicification. In Lewin, R. (ed.) Physiology and biochemistry of algae, 445 – 455 (Academic Press, New York, 1962).

  • Pančić, M., Torres, R. R., Almeda, R. & Kiørboe, T. Silicified cell walls as a defensive trait in diatoms. Proc. R. Soc. B: Biol. Sci. 286, 20190184 (2019).

    Article 

    Google Scholar 

  • Kröger, N. & Poulsen, N. Diatoms—from cell wall biogenesis to nanotechnology. Annu. Rev. Genet. 42, 83–107 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Miklasz, K. A. & Denny, M. W. Diatom sinkings speeds: Improved predictions and insight from a modified stokes’ law. Limnol. Oceanogr. 55, 2513–2525 (2010).

    Article 

    Google Scholar 

  • Nishioka, J. et al. Subpolar marginal seas fuel the North Pacific through the intermediate water at the termination of the global ocean circulation. Proc. Natl Acad. Sci. 117, 12665–12673 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nishioka, J. et al. A review: iron and nutrient supply in the subarctic Pacific and its impact on phytoplankton production. J. Oceanogr. 77, 561–587 (2021).

    Article 
    CAS 

    Google Scholar 

  • Dave, A. C. & Lozier, M. S. The impact of advection on stratification and chlorophyll variability in the equatorial Pacific. Geophys. Res. Lett. 42, 4523–4531 (2015).

    Article 

    Google Scholar 

  • JA, B. Atmospheric teleconnections from the equatorial Pacific. Monthly Weather Rev. 97, 163–172 (1969).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1175/1520-0493(1969)0972.3.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1175%2F1520-0493%281969%29097%3C0163%3AATFTEP%3E2.3.CO%3B2″ aria-label=”Article reference 35″ data-doi=”10.1175/1520-0493(1969)0972.3.CO;2″>Article 

    Google Scholar 

  • Martin, J. H. & Fitzwater, S. E. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 331, 341 – 343 (1988).

    Article 

    Google Scholar 

  • Ryther, J. H. Photosynthesis and fish production in the sea. Science 166, 72–76 (1969).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Smetacek, V. Diatoms and the ocean carbon cycle. Protist 150, 25–32 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chavez, F. P., Buck, K. R. & Barber, R. T. Phytoplankton taxa in relation to primary production in the equatorial Pacific. Deep Sea Res. Part A Oceanogr. Res. Pap. 37, 1733–1752 (1990).

    Article 

    Google Scholar 

  • Uitz, J., Claustre, H., Gentili, B. & Stramski, D. Phytoplankton class-specific primary production in the world’s oceans: Seasonal and interannual variability from satellite observations. Glob. Biogeochem. Cycles 24. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009GB003680 (2010).

  • Strutton, P. G. & Chavez, F. P. Primary productivity in the equatorial Pacific during the 1997-1998 El Niño. J. Geophys. Res. Oceans 105, 26089–26101 (2000).

    Article 

    Google Scholar 

  • Ondrusek, M. E., Bidigare, R. R., Sweet, S. T., Defreitas, D. A. & Brooks, J. M. Distribution of phytoplankton pigments in the north pacific ocean in relation to physical and optical variability. Deep Sea Res. Part A. Oceanogr. Res. Pap. 38, 243–266 (1991).

    Article 
    CAS 

    Google Scholar 

  • Behrenfeld, M. J., Bale, A. J., Kolber, Z. S., Aiken, J. & Falkowski, P. G. Confirmation of iron limitation of phytoplankton in the equatorial Pacific Ocean. Nature 383, 508–511 (1996).

    Article 
    CAS 

    Google Scholar 

  • Barber, R. T. & Chavez, F. P. Regulation of primary productivity rate in the equatorial Pacific. Limnol. Oceanogr. 36, 1803–1815 (1991).

    Article 

    Google Scholar 

  • Coale, K. H., Fitzwater, S. E., Gordon, R. M., Johnson, K. S. & Barber, R. T. Control of community growth and export production by upwelled iron in the equatorial Pacific Ocean. Nature 379, 621–624 (1996).

    Article 
    CAS 

    Google Scholar 

  • Dugdale, R. C. & Wilkerson, F. P. Silicate regulation of new production in the equatorial Pacific upwelling. Nature 391, 270–273 (1998).

    Article 
    CAS 

    Google Scholar 

  • Le Grix, N., Zscheischler, J., Laufkötter, C., Rousseaux, C. S. & Frölicher, T. L. Compound high-temperature and low-chlorophyll extremes in the ocean over the satellite period. Biogeosciences 18, 2119–2137 (2021).

    Article 

    Google Scholar 

  • Behrenfeld, M. J. & Boss, E. S. Resurrecting the ecological underpinnings of ocean plankton blooms. Annu. Rev. Mar. Sci. 6, 167–194 (2014).

    Article 

    Google Scholar 

  • Gregg, W. W. & Casey, N. W. Modeling coccolithophores in the global oceans. Deep Sea Res. Part II: Topical Stud. Oceanogr. 54, 447–477 (2007). The Role of Marine Organic Carbon and Calcite Fluxes in Driving Global Climate Change, Past and Future.

    Article 

    Google Scholar 

  • Wang, B. et al. Historical change of El Niño properties sheds light on future changes of extreme El Niño. Proc. Natl Acad. Sci. 116, 22512–22517 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111–116 (2014).

    Article 

    Google Scholar 

  • Jackson, T., Bouman, H. A., Sathyendranath, S. & Devred, E. Regional-scale changes in diatom distribution in the Humboldt upwelling system as revealed by remote sensing: implications for fisheries. ICES J. Mar. Sci. 68, 729–736 (2011).

    Article 

    Google Scholar 

  • Suryan, R. M. et al. Ecosystem response persists after a prolonged marine heatwave. Sci. Rep. 11, 6235–6252 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Glantz, M. H. Currents of change: impacts of El Ninño and La Ninña on climate and society. (Cambridge University Press, Cambridge, United Kingdom, 2001).

    Google Scholar 

  • Arteaga, L. A., Boss, E., Behrenfeld, M. J., Westberry, T. K. & Sarmiento, J. L. Seasonal modulation of phytoplankton biomass in the Southern Ocean. Nat. Commun. 11, 5364 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Behrenfeld, M. J., Doney, S. C., Lima, I., Boss, E. S. & Siegel, D. A. Annual cycles of ecological disturbance and recovery underlying the subarctic Atlantic spring plankton bloom. Glob. Biogeochem. Cycles 27, 526–540 (2013).

    Article 
    CAS 

    Google Scholar 

  • Gelaro, R. et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).

    Article 

    Google Scholar 

  • Schopf, P. S. & Loughe, A. A Reduced-Gravity Isopycnal Ocean Model: Hindcasts of El Niño. Monthly Weather Rev. 123, 2839–2863 (1995).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1175/1520-0493(1995)1232.0.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1175%2F1520-0493%281995%29123%3C2839%3AARGIOM%3E2.0.CO%3B2″ aria-label=”Article reference 58″ data-doi=”10.1175/1520-0493(1995)1232.0.CO;2″>Article 

    Google Scholar 

  • Rienecker, M. M. et al. MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Clim. 24, 3624–3648 (2011).

    Article 

    Google Scholar 

  • Gregg, W. W. & Casey, N. W. Skill assessment of a spectral ocean-atmosphere radiative model. J. Mar. Syst. 76, 49–63 (2009). Skill assessment for coupled biological/physical models of marine systems.

    Article 

    Google Scholar 

  • Eppley, R. W. Temperature and phytoplankton growth in the sea. Fish. Bull. 70, 1063–1085 (1972).

    Google Scholar 

  • Csanady, G. T. Mass transfer to and from small particles in the sea. Limnol. Oceanogr. 31, 237–248 (1986).

    Article 
    CAS 

    Google Scholar 

  • McGillicuddy, D. J., McCarthy, J. J. & Robinson, A. R. Coupled physical and biological modeling of the spring bloom in the North Atlantic (I): Model formulation and one dimensional bloom processes. Deep-Sea Res. 42, 1313–1357 (1995).

    Article 
    CAS 

    Google Scholar 

  • Greene, C. A. et al. The climate data toolbox for matlab. Geochem. Geophys. Geosyst. 20, 3774–3781 (2019).

    Article 

    Google Scholar 

  • Morel, A. et al. Examining the consistency of products derived from various ocean color sensors in open ocean (case 1) waters in the perspective of a multi-sensor approach. Remote Sens. Environ. 111, 69 – 88 (2007).

    Article 

    Google Scholar 

  • Gregg, W. W. Assimilation of seawifs ocean chlorophyll data into a three-dimensional global ocean model. J. Mar. Syst. 69, 205–225 (2008). Physical-Biological Interactions in the Upper Ocean.

    Article 

    Google Scholar 

  • Conkright, M. E. et al. World Ocean Atlas 2001. Volume 4, Nutrients. In NOAA atlas NESDIS ; 52, vol. 4, 392 (US Government Printing Office, Washington, DC, 2002). https://repository.library.noaa.gov/view/noaa/1102.

  • Fung, I. Y. et al. Iron supply and demand in the upper ocean. Glob. Biogeochemical Cycles 14, 281–295 (2000).

    Article 
    CAS 

    Google Scholar 

  • Gregg, W. W., Ginoux, P., Schopf, P. S. & Casey, N. W. Phytoplankton and iron: validation of a global three-dimensional ocean biogeochemical model. Deep Sea Res. Part II: Topical Stud. Oceanogr. 50, 3143–3169 (2003). The US JGOFS Synthesis and Modeling Project: Phase II.

    Article 
    CAS 

    Google Scholar 

  • Rousseaux, C. S. & Gregg, W. W. Recent decadal trends in global phytoplankton composition. Glob. Biogeochem. Cycles 29, 1674–1688 (2015).

    Article 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Larval rockfish growth and survival in response to anomalous ocean conditions

    When legislation to protect wildlife becomes a problem