Bradshaw, W. E. & Holzapfel, C. M. Evolutionary response to rapid climate change. Science 312, 1477–1478 (2006).
Google Scholar
Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406 (2011).
Google Scholar
Audzijonyte, A. et al. Fish body sizes change with temperature but not all species shrink with warming. Nat. Ecol. Evol. 4, 809–814 (2020).
Google Scholar
Gardner, J. L., Heinsohn, R. & Joseph, L. Shifting latitudinal clines in avian body size correlate with global warming in Australian passerines. Proc. R. Soc. B 276, 3845–3852 (2009).
Google Scholar
Bergmann C. Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse (Göttinger Studien, 1847).
Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: a third universal response to warming? Trends Ecol. Evol. 26, 285–291 (2011).
Google Scholar
Darimont, C. T. et al. Human predators outpace other agents of trait change in the wild. Proc. Natl Acad. Sci. USA 106, 952–954 (2009).
Google Scholar
van Gils, J. A. et al. Body shrinkage due to Arctic warming reduces red knot fitness in tropical wintering range. Science 352, 819–821 (2016).
Google Scholar
Ryding, S., Klaassen, M., Tattersall, G. J., Gardner, J. L. & Symonds, M. R. E. Shape-shifting: changing animal morphologies as a response to climatic warming. Trends Ecol. Evol. 36, 1036–1048 (2021).
Google Scholar
Des Roches, S. et al. The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2, 57–64 (2018).
Google Scholar
Enquist, B. J. et al. Scaling from traits to ecosystems: developing a general trait driver theory via integrating trait-based and metabolic scaling theories. Adv. Ecol. Res 52, 249–318 (2015).
Google Scholar
González-Suárez, M. & Revilla, E. Variability in life-history and ecological traits is a buffer against extinction in mammals. Ecol. Lett. 16, 242–251 (2013).
Google Scholar
Ducatez, S., Sol, D., Sayol, F. & Lefebvre, L. Behavioural plasticity is associated with reduced extinction risk in birds. Nat. Ecol. Evol. 4, 788–793 (2020).
Google Scholar
Brady, S. P. et al. Causes of maladaptation. Evol. Appl. 12, 1229–1242 (2019).
Google Scholar
Scheele, B. C., Foster, C. N., Banks, S. C. & Lindenmayer, D. B. Niche contractions in declining species: mechanisms and consequences. Trends Ecol. Evol. 32, 346–355 (2017).
Google Scholar
Campbell-Staton, S. C. et al. Ivory poaching and the rapid evolution of tusklessness in African elephants. Science 374, 483–487 (2021).
Google Scholar
Thompson M. J., Capilla-Lasheras P., Dominoni D. M., Réale D. & Charmantier A. Phenotypic variation in urban environments: mechanisms and implications. Trends Ecol. Evol. 37, 171–182 (2022).
Starrfelt, J. & Kokko, H. Bet-hedging—a triple trade-off between means, variances and correlations. Biol. Rev. 87, 742–755 (2012).
Google Scholar
Heino, M., Díaz Pauli, B. & Dieckmann, U. Fisheries-induced evolution. Annu. Rev. Ecol. Evol. Syst. 46, 461–480 (2015).
Google Scholar
Kindsvater, H. K. & Palkovacs, E. P. Predicting eco-evolutionary impacts of fishing on body size and trophic role of Atlantic cod. Copeia 105, 475–482 (2017).
Google Scholar
Hantak, M. M., McLean, B. S., Li, D. & Guralnick, R. P. Mammalian body size is determined by interactions between climate, urbanization, and ecological traits. Commun. Biol. 4, 972 (2021).
Google Scholar
Freckleton, R. P., Harvey, P. H. & Pagel, M. Bergmann’s rule and body size in mammals. Am. Nat. 161, 821–825 (2003).
Google Scholar
Riddell, E. A., Odom, J. P., Damm, J. D. & Sears, M. W. Plasticity reveals hidden resistance to extinction under climate change in the global hotspot of salamander diversity. Sci. Adv. 4, eaar5471 (2018).
Google Scholar
Cooke, R. S. C., Eigenbrod, F. & Bates, A. E. Projected losses of global mammal and bird ecological strategies. Nat. Commun. 10, 2279 (2019).
Google Scholar
Yang, J. et al. Large underestimation of intraspecific trait variation and its improvements. Front. Plant Sci. 11, 53 (2020).
Google Scholar
Olsen, E. M. et al. Maturation trends indicative of rapid evolution preceded the collapse of northern cod. Nature 428, 932–935 (2004).
Google Scholar
Antonson, N. D., Rubenstein, D. R., Hauber, M. E. & Botero, C. A. Ecological uncertainty favours the diversification of host use in avian brood parasites. Nat. Commun. 11, 4185 (2020).
Google Scholar
Rode, K. D., Amstrup, S. C. & Regehr, E. V. Reduced body size and cub recruitment in polar bears associated with sea ice decline. Ecol. Appl. 20, 768–782 (2010).
Google Scholar
Edeline, E. et al. Harvest-induced disruptive selection increases variance in fitness-related traits. Proc. R. Soc. B 276, 4163–4171 (2009).
Google Scholar
Hays, G. C. et al. Changes in mean body size in an expanding population of a threatened species. Proc. R Soc. B https://doi.org/10.1098/rspb.2022.0696 (2022).
Halfwerk, W. et al. Adaptive changes in sexual signalling in response to urbanization. Nat. Ecol. Evol. 3, 374–380 (2019).
Google Scholar
Fernández-Chacón, A. et al. Protected areas buffer against harvest selection and rebuild phenotypic complexity. Ecol. Appl. 30, e02108 (2020).
Google Scholar
Sánchez-Tójar, A., Moran, N. P., O’Dea, R. E., Reinhold, K. & Nakagawa, S. Illustrating the importance of meta-analysing variances alongside means in ecology and evolution. J. Evol. Biol. 33, 1216–1223 (2020).
Google Scholar
Reed, T. E., Waples, R. S., Schindler, D. E., Hard, J. J. & Kinnison, M. T. Phenotypic plasticity and population viability: the importance of environmental predictability. Proc. R. Soc. B 277, 3391–3400 (2010).
Google Scholar
Klump, B. C. et al. Innovation and geographic spread of a complex foraging culture in an urban parrot. Science 373, 456–460 (2021).
Google Scholar
Bosse, M. et al. Recent natural selection causes adaptive evolution of an avian polygenic trait. Science 358, 365–368 (2017).
Google Scholar
Singer, M. C. & Parmesan, C. Lethal trap created by adaptive evolutionary response to an exotic resource. Nature 557, 238–241 (2018).
Google Scholar
Usui, R., Sheeran, L. K., Asbury, A. M. & Blackson, M. Impacts of the COVID-19 pandemic on mammals at tourism destinations: a systematic review. Mamm. Rev. 51, 492–507 (2021).
Google Scholar
Meineke, E. K. & Daru, B. H. Bias assessments to expand research harnessing biological collections. Trends Ecol. Evol. 36, 1071–1082 (2021).
Google Scholar
The IUCN Red List of Threatened Species. Version 2021-2 (IUCN, accessed November 2021); https://www.iucnredlist.org
Boyd, R. J. et al. ROBITT: a tool for assessing the risk-of-bias in studies of temporal trends in ecology. Methods Ecol. Evol. 13, 1497–1507 (2022).
Google Scholar
Thornton, P. K., Ericksen, P. J., Herrero, M. & Challinor, A. J. Climate variability and vulnerability to climate change: a review. Glob. Change Biol. 20, 3313–3328 (2014).
Google Scholar
Botero, C. A., Weissing, F. J., Wright, J. & Rubenstein, D. R. Evolutionary tipping points in the capacity to adapt to environmental change. Proc. Natl Acad. Sci. USA 112, 184–189 (2015).
Google Scholar
Niklas, K. J. The scaling of plant and animal body mass, length, and diameter. Evolution 48, 44–54 (1994).
Google Scholar
Van Valen, L. Morphological variation and width of ecological niche. Am. Nat. 99, 377–390 (1965).
Google Scholar
Gaillard, J. M. et al. Generation time: a reliable metric to measure life-history variation among mammalian populations. Am. Nat. 166, 119–123 (2005).
Google Scholar
Postma, E. in Quantitative Genetics in the Wild (eds Charmantier, A. et al.) 16–33 (Oxford Univ. Press, 2014).
Jones, K. E. et al. PanTHERIA: a species‐level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648–2648 (2009).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).
Bates D., Mächler M., Bolker B. & Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Ives, A. R., Dinnage, R., Nell, L. A., Helmus, M. & Li, D. phyr: Model based phylogenetic analysis. R package version 1.1.0 https://CRAN.R-project.org/package=phyr (2020).
Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).
Google Scholar
Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).
Google Scholar
Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).
Google Scholar
Hurlbert, S. H. & Lombardi, C. M. Final collapse of the Neyman–Pearson decision theoretic framework and rise of the neoFisherian. Ann. Zool. Fenn. 46, 311–349 (2009).
Google Scholar
Source: Ecology - nature.com