in

Increases in intraspecific body size variation are common among North American mammals and birds between 1880 and 2020

[adace-ad id="91168"]
  • Bradshaw, W. E. & Holzapfel, C. M. Evolutionary response to rapid climate change. Science 312, 1477–1478 (2006).

    Article 
    CAS 

    Google Scholar 

  • Sheridan, J. A. & Bickford, D. Shrinking body size as an ecological response to climate change. Nat. Clim. Change 1, 401–406 (2011).

    Article 

    Google Scholar 

  • Audzijonyte, A. et al. Fish body sizes change with temperature but not all species shrink with warming. Nat. Ecol. Evol. 4, 809–814 (2020).

    Article 

    Google Scholar 

  • Gardner, J. L., Heinsohn, R. & Joseph, L. Shifting latitudinal clines in avian body size correlate with global warming in Australian passerines. Proc. R. Soc. B 276, 3845–3852 (2009).

    Article 

    Google Scholar 

  • Bergmann C. Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse (Göttinger Studien, 1847).

  • Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: a third universal response to warming? Trends Ecol. Evol. 26, 285–291 (2011).

    Article 

    Google Scholar 

  • Darimont, C. T. et al. Human predators outpace other agents of trait change in the wild. Proc. Natl Acad. Sci. USA 106, 952–954 (2009).

    Article 
    CAS 

    Google Scholar 

  • van Gils, J. A. et al. Body shrinkage due to Arctic warming reduces red knot fitness in tropical wintering range. Science 352, 819–821 (2016).

    Article 

    Google Scholar 

  • Ryding, S., Klaassen, M., Tattersall, G. J., Gardner, J. L. & Symonds, M. R. E. Shape-shifting: changing animal morphologies as a response to climatic warming. Trends Ecol. Evol. 36, 1036–1048 (2021).

    Article 

    Google Scholar 

  • Des Roches, S. et al. The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2, 57–64 (2018).

    Article 

    Google Scholar 

  • Enquist, B. J. et al. Scaling from traits to ecosystems: developing a general trait driver theory via integrating trait-based and metabolic scaling theories. Adv. Ecol. Res 52, 249–318 (2015).

    Article 

    Google Scholar 

  • González-Suárez, M. & Revilla, E. Variability in life-history and ecological traits is a buffer against extinction in mammals. Ecol. Lett. 16, 242–251 (2013).

    Article 

    Google Scholar 

  • Ducatez, S., Sol, D., Sayol, F. & Lefebvre, L. Behavioural plasticity is associated with reduced extinction risk in birds. Nat. Ecol. Evol. 4, 788–793 (2020).

    Article 

    Google Scholar 

  • Brady, S. P. et al. Causes of maladaptation. Evol. Appl. 12, 1229–1242 (2019).

    Article 

    Google Scholar 

  • Scheele, B. C., Foster, C. N., Banks, S. C. & Lindenmayer, D. B. Niche contractions in declining species: mechanisms and consequences. Trends Ecol. Evol. 32, 346–355 (2017).

    Article 

    Google Scholar 

  • Campbell-Staton, S. C. et al. Ivory poaching and the rapid evolution of tusklessness in African elephants. Science 374, 483–487 (2021).

    Article 
    CAS 

    Google Scholar 

  • Thompson M. J., Capilla-Lasheras P., Dominoni D. M., Réale D. & Charmantier A. Phenotypic variation in urban environments: mechanisms and implications. Trends Ecol. Evol. 37, 171–182 (2022).

  • Starrfelt, J. & Kokko, H. Bet-hedging—a triple trade-off between means, variances and correlations. Biol. Rev. 87, 742–755 (2012).

    Article 

    Google Scholar 

  • Heino, M., Díaz Pauli, B. & Dieckmann, U. Fisheries-induced evolution. Annu. Rev. Ecol. Evol. Syst. 46, 461–480 (2015).

    Article 

    Google Scholar 

  • Kindsvater, H. K. & Palkovacs, E. P. Predicting eco-evolutionary impacts of fishing on body size and trophic role of Atlantic cod. Copeia 105, 475–482 (2017).

    Article 

    Google Scholar 

  • Hantak, M. M., McLean, B. S., Li, D. & Guralnick, R. P. Mammalian body size is determined by interactions between climate, urbanization, and ecological traits. Commun. Biol. 4, 972 (2021).

    Article 

    Google Scholar 

  • Freckleton, R. P., Harvey, P. H. & Pagel, M. Bergmann’s rule and body size in mammals. Am. Nat. 161, 821–825 (2003).

    Article 

    Google Scholar 

  • Riddell, E. A., Odom, J. P., Damm, J. D. & Sears, M. W. Plasticity reveals hidden resistance to extinction under climate change in the global hotspot of salamander diversity. Sci. Adv. 4, eaar5471 (2018).

    Article 

    Google Scholar 

  • Cooke, R. S. C., Eigenbrod, F. & Bates, A. E. Projected losses of global mammal and bird ecological strategies. Nat. Commun. 10, 2279 (2019).

    Article 

    Google Scholar 

  • Yang, J. et al. Large underestimation of intraspecific trait variation and its improvements. Front. Plant Sci. 11, 53 (2020).

    Article 

    Google Scholar 

  • Olsen, E. M. et al. Maturation trends indicative of rapid evolution preceded the collapse of northern cod. Nature 428, 932–935 (2004).

    Article 
    CAS 

    Google Scholar 

  • Antonson, N. D., Rubenstein, D. R., Hauber, M. E. & Botero, C. A. Ecological uncertainty favours the diversification of host use in avian brood parasites. Nat. Commun. 11, 4185 (2020).

    Article 

    Google Scholar 

  • Rode, K. D., Amstrup, S. C. & Regehr, E. V. Reduced body size and cub recruitment in polar bears associated with sea ice decline. Ecol. Appl. 20, 768–782 (2010).

    Article 

    Google Scholar 

  • Edeline, E. et al. Harvest-induced disruptive selection increases variance in fitness-related traits. Proc. R. Soc. B 276, 4163–4171 (2009).

    Article 

    Google Scholar 

  • Hays, G. C. et al. Changes in mean body size in an expanding population of a threatened species. Proc. R Soc. B https://doi.org/10.1098/rspb.2022.0696 (2022).

  • Halfwerk, W. et al. Adaptive changes in sexual signalling in response to urbanization. Nat. Ecol. Evol. 3, 374–380 (2019).

    Article 

    Google Scholar 

  • Fernández-Chacón, A. et al. Protected areas buffer against harvest selection and rebuild phenotypic complexity. Ecol. Appl. 30, e02108 (2020).

    Article 

    Google Scholar 

  • Sánchez-Tójar, A., Moran, N. P., O’Dea, R. E., Reinhold, K. & Nakagawa, S. Illustrating the importance of meta-analysing variances alongside means in ecology and evolution. J. Evol. Biol. 33, 1216–1223 (2020).

    Article 

    Google Scholar 

  • Reed, T. E., Waples, R. S., Schindler, D. E., Hard, J. J. & Kinnison, M. T. Phenotypic plasticity and population viability: the importance of environmental predictability. Proc. R. Soc. B 277, 3391–3400 (2010).

    Article 

    Google Scholar 

  • Klump, B. C. et al. Innovation and geographic spread of a complex foraging culture in an urban parrot. Science 373, 456–460 (2021).

    Article 
    CAS 

    Google Scholar 

  • Bosse, M. et al. Recent natural selection causes adaptive evolution of an avian polygenic trait. Science 358, 365–368 (2017).

    Article 
    CAS 

    Google Scholar 

  • Singer, M. C. & Parmesan, C. Lethal trap created by adaptive evolutionary response to an exotic resource. Nature 557, 238–241 (2018).

    Article 
    CAS 

    Google Scholar 

  • Usui, R., Sheeran, L. K., Asbury, A. M. & Blackson, M. Impacts of the COVID-19 pandemic on mammals at tourism destinations: a systematic review. Mamm. Rev. 51, 492–507 (2021).

    Article 

    Google Scholar 

  • Meineke, E. K. & Daru, B. H. Bias assessments to expand research harnessing biological collections. Trends Ecol. Evol. 36, 1071–1082 (2021).

    Article 

    Google Scholar 

  • The IUCN Red List of Threatened Species. Version 2021-2 (IUCN, accessed November 2021); https://www.iucnredlist.org

  • Boyd, R. J. et al. ROBITT: a tool for assessing the risk-of-bias in studies of temporal trends in ecology. Methods Ecol. Evol. 13, 1497–1507 (2022).

    Article 

    Google Scholar 

  • Thornton, P. K., Ericksen, P. J., Herrero, M. & Challinor, A. J. Climate variability and vulnerability to climate change: a review. Glob. Change Biol. 20, 3313–3328 (2014).

    Article 

    Google Scholar 

  • Botero, C. A., Weissing, F. J., Wright, J. & Rubenstein, D. R. Evolutionary tipping points in the capacity to adapt to environmental change. Proc. Natl Acad. Sci. USA 112, 184–189 (2015).

    Article 
    CAS 

    Google Scholar 

  • Niklas, K. J. The scaling of plant and animal body mass, length, and diameter. Evolution 48, 44–54 (1994).

    Article 
    CAS 

    Google Scholar 

  • Van Valen, L. Morphological variation and width of ecological niche. Am. Nat. 99, 377–390 (1965).

    Article 

    Google Scholar 

  • Gaillard, J. M. et al. Generation time: a reliable metric to measure life-history variation among mammalian populations. Am. Nat. 166, 119–123 (2005).

    Article 

    Google Scholar 

  • Postma, E. in Quantitative Genetics in the Wild (eds Charmantier, A. et al.) 16–33 (Oxford Univ. Press, 2014).

  • Jones, K. E. et al. PanTHERIA: a species‐level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648–2648 (2009).

    Article 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).

  • Bates D., Mächler M., Bolker B. & Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

  • Ives, A. R., Dinnage, R., Nell, L. A., Helmus, M. & Li, D. phyr: Model based phylogenetic analysis. R package version 1.1.0 https://CRAN.R-project.org/package=phyr (2020).

  • Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).

    Article 
    CAS 

    Google Scholar 

  • Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    Article 
    CAS 

    Google Scholar 

  • Suchard, M. A. et al. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 4, vey016 (2018).

    Article 

    Google Scholar 

  • Hurlbert, S. H. & Lombardi, C. M. Final collapse of the Neyman–Pearson decision theoretic framework and rise of the neoFisherian. Ann. Zool. Fenn. 46, 311–349 (2009).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Schooling behavior driven complexities in a fear-induced prey–predator system with harvesting under deterministic and stochastic environments

    Multifunctionality of temperate alley-cropping agroforestry outperforms open cropland and grassland