in

Inferring genetic structure when there is little: population genetics versus genomics of the threatened bat Miniopterus schreibersii across Europe

  • Charlesworth, B. & Charlesworth, D. Population genetics from 1966 to 2016. Heredity 118, 2–9 (2017).

    CAS 

    Google Scholar 

  • Orsini, L., Vanoverbeke, J., Swillen, I., Mergeay, J. & Meester, L. Drivers of population genetic differentiation in the wild: Isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Mol. Ecol. 22, 5983–5999 (2013).

    Google Scholar 

  • Vendrami, D. L. J. et al. RAD sequencing resolves fine-scale population structure in a benthic invertebrate: Implications for understanding phenotypic plasticity. R. Soc. Open Sci. 4, 160548 (2017).

    ADS 

    Google Scholar 

  • Dufresnes, C., Rodrigues, N. & Savary, R. Slow and steady wins the race: Contrasted phylogeographic signatures in two Alpine amphibians. Integr. Zool. 17, 181–190 (2021).

    Google Scholar 

  • Frankham, R. Genetics and extinction. Biol. Conserv. 126, 131–140 (2005).

    Google Scholar 

  • Schwartz, M. K., Luikart, G. & Waples, R. S. Genetic monitoring as a promising tool for conservation and management. Trends in Ecol. Evol. 22, 25–33 (2007).

    Google Scholar 

  • Ottewell, K. M., Bickerton, D. C., Byrne, M. & Lowe, A. J. Bridging the gap: A genetic assessment framework for population-level threatened plant conservation prioritization and decision-making. Divers. Distrib. 22, 174–188 (2016).

    Google Scholar 

  • Frankham, R., Bradshaw, C. J. A. & Brook, B. W. Genetics in conservation management: Revised recommendations for the 50/500 rules, red list criteria and population viability analyses. Biol. Conserv. 170, 56–63 (2014).

    Google Scholar 

  • Hohenlohe, P. A., Funk, C. W. & Rajora, O. P. Population genomics for wildlife conservation and management. Mol. Ecol. 30, 62–82 (2020).

    Google Scholar 

  • Angelone, S. & Holderegger, R. Population genetics suggests effectiveness of habitat connectivity measures for the European tree frog in Switzerland. J. Appl. Ecol. 46, 879–887 (2009).

    Google Scholar 

  • Griffiths, S. M., Taylor-Cox, E. D., Behringer, D. C., Butler, M. J. IV. & Preziosi, R. F. Using genetics to inform restoration and predict resilience in declining populations of a keystone marine sponge. Biodivers. Conserv. 29, 1383–1410 (2020).

    Google Scholar 

  • Moritz, C. Conservation units and translocations: Strategies for conserving evolutionary processes. Hereditas 130, 217–228 (1999).

    Google Scholar 

  • Bohonak, A. J. Dispersal, gene flow, and population structure. Q. Rev. Biol. 74, 21–45 (1999).

    CAS 

    Google Scholar 

  • Arguedas, N. & Parker, P. G. Seasonal migration and genetic population structure in house wrens. Condor 102, 517–528 (2000).

    Google Scholar 

  • Quillfeldt, P. et al. Does genetic structure reflect differences in non-breeding movements? A case study in small, highly mobile seabirds. BMC Evol. Biol. 17, 160 (2017).

    Google Scholar 

  • Charlesworth, B., Sniegowski, P. & Stephan, W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371, 215–220 (1994).

    ADS 
    CAS 

    Google Scholar 

  • Schlötterer, C. Evolutionary dynamics of microsatellite DNA. Chromosoma 109, 365–371 (2000).

    Google Scholar 

  • Ellegren, H. Microsatellites: Simple sequences with complex evolution. Nat. Rev. Genet. 5, 435–445 (2004).

    CAS 

    Google Scholar 

  • Hodel, R. G. J. et al. The report of my death was an exaggeration: A review for researchers using microsatellites in the 21st century. Appl. Plant Sci. 4, 1600025 (2016).

    Google Scholar 

  • Dufresnes, C. & Litvinchuk, S. N. Diversity, distribution and molecular species delimitation in frogs and toads from the Eastern Palearctic. Zool. J. Linn. Soc. 195, 695–760 (2022).

    Google Scholar 

  • Galtier, N., Nabholz, B., Glémin, S. & Hurst, G. D. D. Mitochondrial DNA as a marker of molecular diversity: A reappraisal. Mol. Evol. 18, 4541–4550 (2009).

    CAS 

    Google Scholar 

  • Zink, R. M. & Barrowclough, G. Mitochondrial DNA under siege in avian phylogeography. Mol. Ecol. 17, 2107–2121 (2008).

    CAS 

    Google Scholar 

  • Toews, D. P. L. & Brelsford, A. The biogeography of mitochondrial and nuclear discordance in animals. Mol. Ecol. 21, 3907–3930 (2012).

    CAS 

    Google Scholar 

  • Bonnet, T., Leblois, R., Rousset, F. & Crochet, P.-A. A reassessment of explanations for discordant introgressions of mitochondrial and nuclear genomes. Evolution 71, 2140–2218 (2017).

    Google Scholar 

  • Davey, J. W. & Blaxter, M. L. RADSeq: Next-generation population genetics. Brief Funct. Genomics 9, 416–423 (2010).

    CAS 

    Google Scholar 

  • Lexer, C. et al. ‘Next generation’ biogeography: Towards understanding the drivers of species diversification and persistence. J. Biogeogr. 40, 1013–1022 (2013).

    Google Scholar 

  • Baird, N. A. et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3, e3376 (2008).

    ADS 

    Google Scholar 

  • Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double Digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7, e37135 (2012).

    ADS 
    CAS 

    Google Scholar 

  • Dufresnes, C. et al. Phylogeography of a cryptic speciation continuum in Eurasian spadefoot toads (Pelobates). Mol. Ecol. 28, 3257–3270 (2019).

    Google Scholar 

  • Sunde, J., Yıldırım, Y., Tibblin, P. & Forsman, A. Comparing the performance of microsatellites and RADseq in population genetic studies: Analysis of data for pike (Esox Lucius) and a synthesis of previous studies. Front. Genet. 11, 218 (2020).

    Google Scholar 

  • Moussy, C. et al. Migration and dispersal patterns of bats and their influence on genetic structure. Mammal Rev. 43, 183–195 (2013).

    Google Scholar 

  • Berthier, P., Excoffier, L. & Ruedi, M. Recurrent replacement of mtDNA and cryptic hybridization between two sibling bat species Myotis myotis and Myotis blythii. Proc. R. Soc. B: Biol. Sci. 273, 3101–3109 (2007).

    Google Scholar 

  • Wright, P. G. R. et al. Hydrogen isotopes reveal evidence of migration of Miniopterus schreibersii in Europe. BMC Ecol. 20, 52 (2020).

    CAS 

    Google Scholar 

  • Schnetter, W. Beringungsergebnisse an der Langflügelfledermaus (Miniopterus schreibersi Kühl) im Kaiserstuhl. Bonn. Zool. Beitr. 11, 150–165 (1960).

    Google Scholar 

  • Rodrigues, L. Miniopterus schreibersii. In The Atlas of European Mammals (eds Mitchell-Jones, A. J. et al.) 154–155 (Academic Press, 1999).

    Google Scholar 

  • Rodrigues, L., Ramos Pereira, M. J., Rainho, A. & Palmeirim, J. M. Behavioral determinants of gene flow in the bat Miniopterus schreibersii. Behav. Ecol. Sociobiol. 64, 835–843 (2010).

    Google Scholar 

  • Rodrigues, L. & Palmeirim, J. M. Migratory behaviour of Miniopterus schreibersii (Chiroptera): When, where, and why do cave bats migrate in a Mediterranean region?. J. Zool. 274, 116–125 (2008).

    Google Scholar 

  • Ramos Pereira, M. J., Salgueiro, P., Rodrigues, L., Coelho, M. M. & Palmeirim, J. M. Population structure of a cave-dwelling bat, Miniopterus schreibersii: Does it reflect history and social organization?. J. Hered. 100, 533–544 (2009).

    Google Scholar 

  • Bilgin, R. et al. Circum-Mediterranean phylogeography of a bat coupled with past environmental niche modeling: A new paradigm for the recolonization of Europe?. Mol. Phylogenet. Evol. 99, 323–336 (2016).

    Google Scholar 

  • Gürün, K. et al. A continent-scale study of the social structure and phylogeography of the bent-wing bat, Miniopterus schreibersii (Mammalia: Chiroptera), using new microsatellite data. J. Mammal. 100, 1865–1878 (2019).

    Google Scholar 

  • Gazaryan, S., Bücs, S., Çoraman, E. Miniopterus schreibersii (errata version published in 2021). The IUCN Red List of Threatened Species 2020: e.T81633057A195856522 (2020).

  • Miller-Butterworth, C. M., Jacobs, D. S. & Harley, E. H. Isolation and characterization of highly polymorphic microsatellite loci in Schreibers’ long-fingered bat, Miniopterus schreibersii (Chiroptera: Vespertilionidae). Mol. Ecol. Notes 2, 139–141 (2002).

    CAS 

    Google Scholar 

  • Wood, R., Weyeneth, N. & Appleton, B. Development and characterisation of 20 microsatellite loci isolated from the large bent-wing bat, Miniopterus schreibersii (Chiroptera: Miniopteridae) and their cross-taxa utility in the family Miniopteridae. Mol. Ecol. Resour. 11, 675–685 (2011).

    Google Scholar 

  • Witsenburg, F. et al. How a haemosporidian parasite of bats gets around: The genetic structure of a parasite, vector and host compared. Mol. Ecol. 24, 926–940 (2015).

    CAS 

    Google Scholar 

  • Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. micro-checker: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).

    Google Scholar 

  • Parchman, T. L. et al. Genome wide association mapping of an adaptive trait in lodgepole pine. Mol. Ecol. 21, 2991–3005 (2012).

    CAS 

    Google Scholar 

  • Catchen, J. M., Amores, A., Hohenlohe, P., Cresko, W. & Postlethwait, J. H. Stacks: Building and genotyping loci de novo from short-read sequences. G3 1, 171–182 (2011).

    CAS 

    Google Scholar 

  • Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analyses of population structure. Evolution 38, 1358–1370 (1984).

    CAS 

    Google Scholar 

  • Goudet, J. hierfstat, a package for r to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186 (2005).

    Google Scholar 

  • Frankham, R., Ballou, J. D. & Briscoe, D. A. A Primer of Conservation Genetics (Cambridge University Press, 2004).

    Google Scholar 

  • Weir, B. S. & Goudet, J. A unified characterization of population structure and relatedness. Genetics 206, 2085–2103 (2017).

    Google Scholar 

  • Mantel, N. A. The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209–220 (1967).

    CAS 

    Google Scholar 

  • Wright, S. Isolation by distance. Genetics 28, 114–138 (1943).

    CAS 

    Google Scholar 

  • Cavalli-Sforza, L. L. & Edwards, A. W. F. Phylogenetic analysis: Model and estimation procedures. Am. J. Hum. Genet. 19, 233–257 (1967).

    CAS 

    Google Scholar 

  • Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).

    CAS 

    Google Scholar 

  • Goudet, J., Perrin, N. & Waser, P. Tests for sex-biased dispersal using bi-parentally inherited genetic markers. Mol. Ecol. 11, 1103–1114 (2002).

    CAS 

    Google Scholar 

  • Frichot, E. & François, O. lea: An r package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925–929 (2015).

    Google Scholar 

  • Yannic, G. et al. High connectivity in a long-lived High-Arctic seabird, the ivory gull Pagophila eburnea. Polar Biol. 39, 221–236 (2016).

    Google Scholar 

  • Cumer, T. et al. Landscape and climatic variations of the Quaternary shaped multiple secondary contacts among barn owls (Tyto alba) of the Western Palearctic. Mol. Biol. Evol. 39, msab343 (2022).

    CAS 

    Google Scholar 

  • Boston, E. S. M., Montgomery, W. I., Hynes, R. & Prodöhl, P. A. New insights on postglacial colonization in western Europe: The phylogeography of the Leisler’s bat (Nyctalus leisleri). Proc. R. Soc. B: Biol. Sci. 282, 20142605 (2015).

    Google Scholar 

  • Razgour, O. et al. The shaping of genetic variation in edge-of-range populations under past and future climate change. Ecol. Lett. 16, 1258–1266 (2013).

    Google Scholar 

  • Petit, E., Balloux, F. & Goudet, J. Sex-biased dispersal in a migratory bat: A characterization using sex-specific demographic parameters. Evolution 55, 635–640 (2001).

    CAS 

    Google Scholar 

  • Moussy, C. et al. Population genetic structure of serotine bats (Eptesicus serotinus) across Europe and implications for the potential spread of bat rabies (European bat lyssavirus EBLV-1). Heredity 115, 83–92 (2015).

    CAS 

    Google Scholar 

  • Rossiter, S. J., Benda, P., Dietz, C., Zhang, S. & Jones, G. Rangewide phylogeography in the greater horseshoe bat inferred from microsatellites: Implications for population history, taxonomy and conservation. Mol. Ecol. 16, 4699–4714 (2007).

    CAS 

    Google Scholar 

  • Dool, S. E. et al. Phylogeography and postglacial recolonization of Europe by Rhinolophus hipposideros: Evidence from multiple genetic markers. Mol. Ecol. 22, 4055–4070 (2013).

    CAS 

    Google Scholar 

  • Kerth, G. et al. Communally breeding Bechstein’s bats have a stable social system that is independent from the postglacial history and location of the populations. Mol. Ecol. 17, 2368–2381 (2008).

    CAS 

    Google Scholar 

  • Garrick, R. C., Banusiewicz, J. D., Burgess, S., Hyseni, C. & Symula, R. E. Extending phylogeography to account for lineage fusion. J. Biogeogr. 46, 268–278 (2019).

    Google Scholar 

  • Burri, R. et al. The genetic basis of color-related local adaptation in a ring-like colonization around the Mediterranean. Evolution 70, 140–153 (2016).

    Google Scholar 

  • Taberlet, P., Fumagalli, L., Wust-Saucy, A.-G. & Cosson, J.-F. Comparative phylogeography and postglacial colonization routes in Europe. Mol. Ecol. 7, 453–464 (1998).

    CAS 

    Google Scholar 

  • Hewitt, G. M. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 68, 87–112 (1999).

    Google Scholar 

  • Gómez, A. & Lunt, D. H. Refugia within refugia: Patterns of phylogeographic concordance in the Iberian Peninsula. In Phylogeography of Southern European Refugia (eds Weiss, S. & Ferrand, N.) 155–188 (Springer, 2007).

    Google Scholar 

  • Vonhof, M. J., Russell, A. L. & Miller-Butterworth, M. Range-wide genetic analysis of little brown bat (Myotis lucifugus) populations: Estimating the risk of spread of white-nose syndrome. PLoS ONE 10, e0128713 (2015).

    Google Scholar 

  • Auteri, G. G. & Knowles, L. L. Decimated little brown bats show potential for adaptive change. Sci. Rep. 10, 3023 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Gignoux-Wolfsohn, S. A. et al. Genomic signatures of selection in bats surviving white-nose syndrome. Mol. Ecol. 30, 5643–5657 (2021).

    Google Scholar 

  • Rivers, N. M., Butlin, R. K. & Altringham, J. D. Autumn swarming behaviour of Natterer’s bats in the UK: Population size, catchment area and dispersal. Biol. Conserv. 127, 215–226 (2006).

    Google Scholar 

  • Reis, N. R., Fregonezi, M. N., Peracchi, A. L. & Rossaneis, B. K. Metapopulation in bats of Southern Brazil. Braz. J. Biol. 72, 605–609 (2012).

    CAS 

    Google Scholar 

  • Humphrey, S. R. & Oli, M. K. Population dynamics and site fidelity of the cave bat, Myotis velifer, Oklahoma. J. Mammal. 96, 946–956 (2015).

    Google Scholar 

  • Jeffries, D. L. et al. Comparing RADseq and microsatellites to infer complex phylogeographic patterns, an empirical perspective in the Crucian carp, Carassius carassius. L. Mol. Ecol. 25, 2997–3018 (2016).

    Google Scholar 

  • Hodel, R. G. J. et al. Adding loci improves phylogeographic resolution in red mangroves despite increased missing data: Comparing microsatellites and RAD-Seq and investigating loci filtering. Sci. Rep. 7, 17598 (2017).

    ADS 

    Google Scholar 

  • Lemopoulos, A. et al. Comparing RADseq and microsatellites for estimating genetic diversity and relatedness—Implications for brown trout conservation. Ecol. Evol. 9, 2106–2120 (2019).

    Google Scholar 

  • Zimmerman, S. J., Aldridge, C. L. & Oyler-McCance, S. J. An empirical comparison of population genetic analyses using microsatellite and SNP data for a species of conservation concern. BMC Genom. 21, 382 (2020).

    CAS 

    Google Scholar 

  • Hale, M. L., Burg, T. M. & Steeves, T. E. Sampling for microsatellite-based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies. PLoS ONE 7, e45170 (2012).

    ADS 
    CAS 

    Google Scholar 

  • Quetglas, J., Gonzalez, F. & Paz, O. Estudian la extraña mortandad de miles de murcielago de cuevas. Quercus 203, 50 (2003).

    Google Scholar 

  • Negredo, A. et al. Discovery of an ebolavirus-like filovirus in Europe. PLoS Pathog. 7, e1002304 (2011).

    CAS 

    Google Scholar 

  • Reed, D. H. & Frankham, R. Correlation between fitness and genetic diversity. Conserv. Biol. 17, 230–237 (2003).

    Google Scholar 

  • Alcalde, J. T., Artácoz, A. & Meijide, F. Recuperación de la colonia de Miniopterus schreibersii de la cueva de Cueva de Ágreda (Soria). Barbastella 5, 32–35 (2012).

    Google Scholar 

  • Kemenesi, G. et al. Re-emergence of Lloviu virus in Miniopterus schreibersii bats, Hungary, 2016. Emerg. Microbes Infect. 7, 66 (2018).

    Google Scholar 

  • Kemenesi, et al. Isolation of infectious Lloviu virus from Schreiber’s bats in Hungary. Nat. Commun. 13, 1706 (2022).

    ADS 
    CAS 

    Google Scholar 

  • Stoffel, C. et al. Genetic consequences of population expansions and contractions in the common hippopotamus (Hippopotamus amphibius) since the late Pleistocene. Mol. Ecol. 24, 2507–2520 (2015).

    Google Scholar 


  • Source: Ecology - nature.com

    Polydimethylsiloxane-coated textiles with minimized microplastic pollution

    Quantitative dose-response analysis untangles host bottlenecks to enteric infection