Charlesworth, B. & Charlesworth, D. Population genetics from 1966 to 2016. Heredity 118, 2–9 (2017).
Google Scholar
Orsini, L., Vanoverbeke, J., Swillen, I., Mergeay, J. & Meester, L. Drivers of population genetic differentiation in the wild: Isolation by dispersal limitation, isolation by adaptation and isolation by colonization. Mol. Ecol. 22, 5983–5999 (2013).
Vendrami, D. L. J. et al. RAD sequencing resolves fine-scale population structure in a benthic invertebrate: Implications for understanding phenotypic plasticity. R. Soc. Open Sci. 4, 160548 (2017).
Google Scholar
Dufresnes, C., Rodrigues, N. & Savary, R. Slow and steady wins the race: Contrasted phylogeographic signatures in two Alpine amphibians. Integr. Zool. 17, 181–190 (2021).
Frankham, R. Genetics and extinction. Biol. Conserv. 126, 131–140 (2005).
Schwartz, M. K., Luikart, G. & Waples, R. S. Genetic monitoring as a promising tool for conservation and management. Trends in Ecol. Evol. 22, 25–33 (2007).
Ottewell, K. M., Bickerton, D. C., Byrne, M. & Lowe, A. J. Bridging the gap: A genetic assessment framework for population-level threatened plant conservation prioritization and decision-making. Divers. Distrib. 22, 174–188 (2016).
Frankham, R., Bradshaw, C. J. A. & Brook, B. W. Genetics in conservation management: Revised recommendations for the 50/500 rules, red list criteria and population viability analyses. Biol. Conserv. 170, 56–63 (2014).
Hohenlohe, P. A., Funk, C. W. & Rajora, O. P. Population genomics for wildlife conservation and management. Mol. Ecol. 30, 62–82 (2020).
Angelone, S. & Holderegger, R. Population genetics suggests effectiveness of habitat connectivity measures for the European tree frog in Switzerland. J. Appl. Ecol. 46, 879–887 (2009).
Griffiths, S. M., Taylor-Cox, E. D., Behringer, D. C., Butler, M. J. IV. & Preziosi, R. F. Using genetics to inform restoration and predict resilience in declining populations of a keystone marine sponge. Biodivers. Conserv. 29, 1383–1410 (2020).
Moritz, C. Conservation units and translocations: Strategies for conserving evolutionary processes. Hereditas 130, 217–228 (1999).
Bohonak, A. J. Dispersal, gene flow, and population structure. Q. Rev. Biol. 74, 21–45 (1999).
Google Scholar
Arguedas, N. & Parker, P. G. Seasonal migration and genetic population structure in house wrens. Condor 102, 517–528 (2000).
Quillfeldt, P. et al. Does genetic structure reflect differences in non-breeding movements? A case study in small, highly mobile seabirds. BMC Evol. Biol. 17, 160 (2017).
Charlesworth, B., Sniegowski, P. & Stephan, W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371, 215–220 (1994).
Google Scholar
Schlötterer, C. Evolutionary dynamics of microsatellite DNA. Chromosoma 109, 365–371 (2000).
Ellegren, H. Microsatellites: Simple sequences with complex evolution. Nat. Rev. Genet. 5, 435–445 (2004).
Google Scholar
Hodel, R. G. J. et al. The report of my death was an exaggeration: A review for researchers using microsatellites in the 21st century. Appl. Plant Sci. 4, 1600025 (2016).
Dufresnes, C. & Litvinchuk, S. N. Diversity, distribution and molecular species delimitation in frogs and toads from the Eastern Palearctic. Zool. J. Linn. Soc. 195, 695–760 (2022).
Galtier, N., Nabholz, B., Glémin, S. & Hurst, G. D. D. Mitochondrial DNA as a marker of molecular diversity: A reappraisal. Mol. Evol. 18, 4541–4550 (2009).
Google Scholar
Zink, R. M. & Barrowclough, G. Mitochondrial DNA under siege in avian phylogeography. Mol. Ecol. 17, 2107–2121 (2008).
Google Scholar
Toews, D. P. L. & Brelsford, A. The biogeography of mitochondrial and nuclear discordance in animals. Mol. Ecol. 21, 3907–3930 (2012).
Google Scholar
Bonnet, T., Leblois, R., Rousset, F. & Crochet, P.-A. A reassessment of explanations for discordant introgressions of mitochondrial and nuclear genomes. Evolution 71, 2140–2218 (2017).
Davey, J. W. & Blaxter, M. L. RADSeq: Next-generation population genetics. Brief Funct. Genomics 9, 416–423 (2010).
Google Scholar
Lexer, C. et al. ‘Next generation’ biogeography: Towards understanding the drivers of species diversification and persistence. J. Biogeogr. 40, 1013–1022 (2013).
Baird, N. A. et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3, e3376 (2008).
Google Scholar
Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double Digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7, e37135 (2012).
Google Scholar
Dufresnes, C. et al. Phylogeography of a cryptic speciation continuum in Eurasian spadefoot toads (Pelobates). Mol. Ecol. 28, 3257–3270 (2019).
Sunde, J., Yıldırım, Y., Tibblin, P. & Forsman, A. Comparing the performance of microsatellites and RADseq in population genetic studies: Analysis of data for pike (Esox Lucius) and a synthesis of previous studies. Front. Genet. 11, 218 (2020).
Moussy, C. et al. Migration and dispersal patterns of bats and their influence on genetic structure. Mammal Rev. 43, 183–195 (2013).
Berthier, P., Excoffier, L. & Ruedi, M. Recurrent replacement of mtDNA and cryptic hybridization between two sibling bat species Myotis myotis and Myotis blythii. Proc. R. Soc. B: Biol. Sci. 273, 3101–3109 (2007).
Wright, P. G. R. et al. Hydrogen isotopes reveal evidence of migration of Miniopterus schreibersii in Europe. BMC Ecol. 20, 52 (2020).
Google Scholar
Schnetter, W. Beringungsergebnisse an der Langflügelfledermaus (Miniopterus schreibersi Kühl) im Kaiserstuhl. Bonn. Zool. Beitr. 11, 150–165 (1960).
Rodrigues, L. Miniopterus schreibersii. In The Atlas of European Mammals (eds Mitchell-Jones, A. J. et al.) 154–155 (Academic Press, 1999).
Rodrigues, L., Ramos Pereira, M. J., Rainho, A. & Palmeirim, J. M. Behavioral determinants of gene flow in the bat Miniopterus schreibersii. Behav. Ecol. Sociobiol. 64, 835–843 (2010).
Rodrigues, L. & Palmeirim, J. M. Migratory behaviour of Miniopterus schreibersii (Chiroptera): When, where, and why do cave bats migrate in a Mediterranean region?. J. Zool. 274, 116–125 (2008).
Ramos Pereira, M. J., Salgueiro, P., Rodrigues, L., Coelho, M. M. & Palmeirim, J. M. Population structure of a cave-dwelling bat, Miniopterus schreibersii: Does it reflect history and social organization?. J. Hered. 100, 533–544 (2009).
Bilgin, R. et al. Circum-Mediterranean phylogeography of a bat coupled with past environmental niche modeling: A new paradigm for the recolonization of Europe?. Mol. Phylogenet. Evol. 99, 323–336 (2016).
Gürün, K. et al. A continent-scale study of the social structure and phylogeography of the bent-wing bat, Miniopterus schreibersii (Mammalia: Chiroptera), using new microsatellite data. J. Mammal. 100, 1865–1878 (2019).
Gazaryan, S., Bücs, S., Çoraman, E. Miniopterus schreibersii (errata version published in 2021). The IUCN Red List of Threatened Species 2020: e.T81633057A195856522 (2020).
Miller-Butterworth, C. M., Jacobs, D. S. & Harley, E. H. Isolation and characterization of highly polymorphic microsatellite loci in Schreibers’ long-fingered bat, Miniopterus schreibersii (Chiroptera: Vespertilionidae). Mol. Ecol. Notes 2, 139–141 (2002).
Google Scholar
Wood, R., Weyeneth, N. & Appleton, B. Development and characterisation of 20 microsatellite loci isolated from the large bent-wing bat, Miniopterus schreibersii (Chiroptera: Miniopteridae) and their cross-taxa utility in the family Miniopteridae. Mol. Ecol. Resour. 11, 675–685 (2011).
Witsenburg, F. et al. How a haemosporidian parasite of bats gets around: The genetic structure of a parasite, vector and host compared. Mol. Ecol. 24, 926–940 (2015).
Google Scholar
Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. micro-checker: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).
Parchman, T. L. et al. Genome wide association mapping of an adaptive trait in lodgepole pine. Mol. Ecol. 21, 2991–3005 (2012).
Google Scholar
Catchen, J. M., Amores, A., Hohenlohe, P., Cresko, W. & Postlethwait, J. H. Stacks: Building and genotyping loci de novo from short-read sequences. G3 1, 171–182 (2011).
Google Scholar
Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analyses of population structure. Evolution 38, 1358–1370 (1984).
Google Scholar
Goudet, J. hierfstat, a package for r to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186 (2005).
Frankham, R., Ballou, J. D. & Briscoe, D. A. A Primer of Conservation Genetics (Cambridge University Press, 2004).
Weir, B. S. & Goudet, J. A unified characterization of population structure and relatedness. Genetics 206, 2085–2103 (2017).
Mantel, N. A. The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209–220 (1967).
Google Scholar
Wright, S. Isolation by distance. Genetics 28, 114–138 (1943).
Google Scholar
Cavalli-Sforza, L. L. & Edwards, A. W. F. Phylogenetic analysis: Model and estimation procedures. Am. J. Hum. Genet. 19, 233–257 (1967).
Google Scholar
Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).
Google Scholar
Goudet, J., Perrin, N. & Waser, P. Tests for sex-biased dispersal using bi-parentally inherited genetic markers. Mol. Ecol. 11, 1103–1114 (2002).
Google Scholar
Frichot, E. & François, O. lea: An r package for landscape and ecological association studies. Methods Ecol. Evol. 6, 925–929 (2015).
Yannic, G. et al. High connectivity in a long-lived High-Arctic seabird, the ivory gull Pagophila eburnea. Polar Biol. 39, 221–236 (2016).
Cumer, T. et al. Landscape and climatic variations of the Quaternary shaped multiple secondary contacts among barn owls (Tyto alba) of the Western Palearctic. Mol. Biol. Evol. 39, msab343 (2022).
Google Scholar
Boston, E. S. M., Montgomery, W. I., Hynes, R. & Prodöhl, P. A. New insights on postglacial colonization in western Europe: The phylogeography of the Leisler’s bat (Nyctalus leisleri). Proc. R. Soc. B: Biol. Sci. 282, 20142605 (2015).
Razgour, O. et al. The shaping of genetic variation in edge-of-range populations under past and future climate change. Ecol. Lett. 16, 1258–1266 (2013).
Petit, E., Balloux, F. & Goudet, J. Sex-biased dispersal in a migratory bat: A characterization using sex-specific demographic parameters. Evolution 55, 635–640 (2001).
Google Scholar
Moussy, C. et al. Population genetic structure of serotine bats (Eptesicus serotinus) across Europe and implications for the potential spread of bat rabies (European bat lyssavirus EBLV-1). Heredity 115, 83–92 (2015).
Google Scholar
Rossiter, S. J., Benda, P., Dietz, C., Zhang, S. & Jones, G. Rangewide phylogeography in the greater horseshoe bat inferred from microsatellites: Implications for population history, taxonomy and conservation. Mol. Ecol. 16, 4699–4714 (2007).
Google Scholar
Dool, S. E. et al. Phylogeography and postglacial recolonization of Europe by Rhinolophus hipposideros: Evidence from multiple genetic markers. Mol. Ecol. 22, 4055–4070 (2013).
Google Scholar
Kerth, G. et al. Communally breeding Bechstein’s bats have a stable social system that is independent from the postglacial history and location of the populations. Mol. Ecol. 17, 2368–2381 (2008).
Google Scholar
Garrick, R. C., Banusiewicz, J. D., Burgess, S., Hyseni, C. & Symula, R. E. Extending phylogeography to account for lineage fusion. J. Biogeogr. 46, 268–278 (2019).
Burri, R. et al. The genetic basis of color-related local adaptation in a ring-like colonization around the Mediterranean. Evolution 70, 140–153 (2016).
Taberlet, P., Fumagalli, L., Wust-Saucy, A.-G. & Cosson, J.-F. Comparative phylogeography and postglacial colonization routes in Europe. Mol. Ecol. 7, 453–464 (1998).
Google Scholar
Hewitt, G. M. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. 68, 87–112 (1999).
Gómez, A. & Lunt, D. H. Refugia within refugia: Patterns of phylogeographic concordance in the Iberian Peninsula. In Phylogeography of Southern European Refugia (eds Weiss, S. & Ferrand, N.) 155–188 (Springer, 2007).
Vonhof, M. J., Russell, A. L. & Miller-Butterworth, M. Range-wide genetic analysis of little brown bat (Myotis lucifugus) populations: Estimating the risk of spread of white-nose syndrome. PLoS ONE 10, e0128713 (2015).
Auteri, G. G. & Knowles, L. L. Decimated little brown bats show potential for adaptive change. Sci. Rep. 10, 3023 (2020).
Google Scholar
Gignoux-Wolfsohn, S. A. et al. Genomic signatures of selection in bats surviving white-nose syndrome. Mol. Ecol. 30, 5643–5657 (2021).
Rivers, N. M., Butlin, R. K. & Altringham, J. D. Autumn swarming behaviour of Natterer’s bats in the UK: Population size, catchment area and dispersal. Biol. Conserv. 127, 215–226 (2006).
Reis, N. R., Fregonezi, M. N., Peracchi, A. L. & Rossaneis, B. K. Metapopulation in bats of Southern Brazil. Braz. J. Biol. 72, 605–609 (2012).
Google Scholar
Humphrey, S. R. & Oli, M. K. Population dynamics and site fidelity of the cave bat, Myotis velifer, Oklahoma. J. Mammal. 96, 946–956 (2015).
Jeffries, D. L. et al. Comparing RADseq and microsatellites to infer complex phylogeographic patterns, an empirical perspective in the Crucian carp, Carassius carassius. L. Mol. Ecol. 25, 2997–3018 (2016).
Hodel, R. G. J. et al. Adding loci improves phylogeographic resolution in red mangroves despite increased missing data: Comparing microsatellites and RAD-Seq and investigating loci filtering. Sci. Rep. 7, 17598 (2017).
Google Scholar
Lemopoulos, A. et al. Comparing RADseq and microsatellites for estimating genetic diversity and relatedness—Implications for brown trout conservation. Ecol. Evol. 9, 2106–2120 (2019).
Zimmerman, S. J., Aldridge, C. L. & Oyler-McCance, S. J. An empirical comparison of population genetic analyses using microsatellite and SNP data for a species of conservation concern. BMC Genom. 21, 382 (2020).
Google Scholar
Hale, M. L., Burg, T. M. & Steeves, T. E. Sampling for microsatellite-based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies. PLoS ONE 7, e45170 (2012).
Google Scholar
Quetglas, J., Gonzalez, F. & Paz, O. Estudian la extraña mortandad de miles de murcielago de cuevas. Quercus 203, 50 (2003).
Negredo, A. et al. Discovery of an ebolavirus-like filovirus in Europe. PLoS Pathog. 7, e1002304 (2011).
Google Scholar
Reed, D. H. & Frankham, R. Correlation between fitness and genetic diversity. Conserv. Biol. 17, 230–237 (2003).
Alcalde, J. T., Artácoz, A. & Meijide, F. Recuperación de la colonia de Miniopterus schreibersii de la cueva de Cueva de Ágreda (Soria). Barbastella 5, 32–35 (2012).
Kemenesi, G. et al. Re-emergence of Lloviu virus in Miniopterus schreibersii bats, Hungary, 2016. Emerg. Microbes Infect. 7, 66 (2018).
Kemenesi, et al. Isolation of infectious Lloviu virus from Schreiber’s bats in Hungary. Nat. Commun. 13, 1706 (2022).
Google Scholar
Stoffel, C. et al. Genetic consequences of population expansions and contractions in the common hippopotamus (Hippopotamus amphibius) since the late Pleistocene. Mol. Ecol. 24, 2507–2520 (2015).
Source: Ecology - nature.com