Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).
Google Scholar
Badgley, G., Field, C. B. & Berry, J. A. Canopy near-infrared reflectance and terrestrial photosynthesis. Sci. Adv.3, e1602244 (2017).
Google Scholar
Chapin, F. S. III Effects of plant traits on ecosystem and regional processes: a conceptual framework for predicting the consequences of global change. Ann. Bot. 91, 455–463 (2003).
Google Scholar
Chu, C. et al. Does climate directly influence NPP globally? Global Chan. Biol. 22, 12–24 (2016).
Google Scholar
Yao, Y. et al. Spatiotemporal pattern of gross primary productivity and its covariation with climate in China over the last thirty years. Global Chan. Biol. 24, 184–196 (2018).
Google Scholar
Fang, J., Lutz, J. A., Wang, L., Shugart, H. H. & Yan, X. Using climate-driven leaf phenology and growth to improve predictions of gross primary productivity in North American forests. Global Chan. Biol. 26, 6974–6988 (2020).
Google Scholar
Fernández-Martínez, M. et al. The role of climate, foliar stoichiometry and plant diversity on ecosystem carbon balance. Global Chan. Biol. 26, 7067–7078 (2020).
Google Scholar
Migliavacca, M. et al. The three major axes of terrestrial ecosystem function. Nature 598, 468–472 (2021).
Google Scholar
Reichstein, M., Bahn, M., Mahecha, M. D., Kattge, J. & Baldocchi, D. D. Linking plant and ecosystem functional biogeography. Proc. Natl. Acad. Sci. 111, 13697–13702 (2014).
Google Scholar
Funk, J. L. et al. Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biol. Rev. 92, 1156–1173 (2017).
Google Scholar
Lavorel, S. & Garnier, É. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Fun. Ecol. 16, 545–556 (2002).
Google Scholar
Enquist, B. J. et al. in Advances in Ecological Research 52 (eds Samraat P, Guy W, & Anthony I. D) 249–318 (Academic Press, 2015).
Garnier, E. et al. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85, 2630–2637 (2004).
Google Scholar
Enquist, B. J. et al. Assessing trait-based scaling theory in tropical forests spanning a broad temperature gradient. Global Ecol. Biogeogr. 26, 1357–1373 (2017).
Google Scholar
Fyllas, N. M. et al. Solar radiation and functional traits explain the decline of forest primary productivity along a tropical elevation gradient. Ecol. Lett. 20, 730–740 (2017).
Google Scholar
Van der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat. Ecol. Evol. 4, 1602–1611 (2020).
Google Scholar
Ali, A., Yan, E.-R., Chang, S. X., Cheng, J.-Y. & Liu, X.-Y. Community-weighted mean of leaf traits and divergence of wood traits predict aboveground biomass in secondary subtropical forests. Sci. Total Environ. 574, 654–662 (2017).
Google Scholar
Yang, J., Cao, M. & Swenson, N. G. Why Functional Traits Do Not Predict Tree Demographic Rates. Trend Ecol. Evol. 33, 326–336 (2018).
Google Scholar
Šímová, I. et al. The relationship of woody plant size and leaf nutrient content to large-scale productivity for forests across the Americas. J. Ecol. 107, 2278–2290 (2019).
Google Scholar
Li, Y. et al. Leaf size of woody dicots predicts ecosystem primary productivity. Ecol. Lett. 23, 1003–1013 (2020).
Google Scholar
He, N. et al. Ecosystem Traits Linking Functional Traits to Macroecology. Trend. Ecol. Evol. 34, 200–210 (2019).
Google Scholar
Rubio, V. E., Zambrano, J., Iida, Y., Umaña, M. N. & Swenson, N. G. Improving predictions of tropical tree survival and growth by incorporating measurements of whole leaf allocation. J. Ecol. 109, 1331–1343 (2021).
Google Scholar
Drake, J. E. et al. Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2. Ecol. Lett. 14, 349–357 (2011).
Google Scholar
Hilty, J., Muller, B., Pantin, F. & Leuzinger, S. Plant growth: the What, the How, and the Why. New Phytol. 232, 25–41 (2021).
Google Scholar
Xia, J. et al. Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proc. Natl. Acad. Sci. 112, 2788–2793 (2015).
Google Scholar
Suding, K. N. et al. Scaling environmental change through the community-level: A trait-based response-and-effect framework for plants. Global Chan. Biol. 14, 1125–1140 (2008).
Google Scholar
Liu, C., Li, Y., Yan, P. & He, N. How to Improve the Predictions of Plant Functional Traits on Ecosystem Functioning? Front. Plant Sci. 12, 622260 (2021).
Reich, P. B., Walters, M. B. & Ellsworth, D. S. From tropics to tundra: global convergence in plant functioning. Proc. Natl. Acad. of Sci. 94, 13730–13734 (1997).
Google Scholar
Reich, P. B. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J. Ecol. 102, 275–301 (2014).
Google Scholar
Monteith, J. L. Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London. B. Biol. Sci. 281, 277–294 (1977).
Garnier, E. Resource capture, biomass allocation and growth in herbaceous plants. Trend. Ecol. Evol. 6, 126–131 (1991).
Google Scholar
Farnsworth, K. D., Albantakis, L. & Caruso, T. Unifying concepts of biological function from molecules to ecosystems. Oikos 126, 1367–1376 (2017).
Google Scholar
Zhang, R. et al. Biodiversity alleviates the decrease of grassland multifunctionality under grazing disturbance: A global meta-analysis. Global Ecol. Biogeogr. 31, 155–167 (2022).
Google Scholar
Jing, X. et al. The links between ecosystem multifunctionality and above-and belowground biodiversity are mediated by climate. Nat. Commun. 6, 1–8 (2015).
Google Scholar
Peters, M. K. et al. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568, 88–92 (2019).
Google Scholar
Hu, W. et al. Aridity-driven shift in biodiversity–soil multifunctionality relationships. Nat. Commun. 12, 1–15 (2021).
Google Scholar
Jing, X. et al. The influence of aboveground and belowground species composition on spatial turnover in nutrient pools in alpine grasslands. Global Ecol. Biogeogr. 31, 486–500 (2022).
Google Scholar
Jing, X. et al. Above-and belowground complementarity rather than selection drives tree diversity-productivity relationships in European forests. Funct Ecol. 35, 1756–1767 (2021).
He, N. et al. Predicting ecosystem productivity based on plant community traits. Trend. Plant Sci. 28, 43–53 (2023).
Maynard, D. S. et al. Global relationships in tree functional traits. Nat. Commun. 13, 1–12 (2022).
Google Scholar
Michaletz, S. T., Kerkhoff, A. J. & Enquist, B. J. Drivers of terrestrial plant production across broad geographical gradients. Global Ecol. Biogeogr. 27, 166–174 (2018).
Google Scholar
Shipley, B. Net assimilation rate, specific leaf area and leaf mass ratio: which is most closely correlated with relative growth rate? A meta-analysis. Funct. Ecol. 20, 565–574 (2006).
Google Scholar
Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).
Google Scholar
Jucker, T., Bouriaud, O. & Coomes, D. A. Crown plasticity enables trees to optimize canopy packing in mixed-species forests. Funct. Ecol. 29, 1078–1086 (2015).
Google Scholar
McGill, B. J. Matters of Scale. Science 328, 575 (2010).
Google Scholar
Penuelas, J. et al. Increasing atmospheric CO2 concentrations correlate with declining nutritional status of European forests. Communi. Biol. 3, 1–11 (2020).
Weemstra, M. et al. Towards a multidimensional root trait framework: a tree root review. New Phytol. 211, 1159–1169 (2016).
Google Scholar
Oehri, J., Schmid, B., Schaepman-Strub, G. & Niklaus, P. A. Biodiversity promotes primary productivity and growing season lengthening at the landscape scale. Proc. Natl. Acad. Sci. 114, 10160–10165 (2017).
Google Scholar
Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).
Google Scholar
Diaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2015).
Google Scholar
Liu, Y. et al. The optimum temperature of soil microbial respiration: Patterns and controls. Soil Biol. Biochem. 121, 35–42 (2018).
Google Scholar
Zhao, N. et al. Coordinated pattern of multi-element variability in leaves and roots across Chinese forest biomes. Global Ecol. Biogeogr. 25, 359–367 (2016).
Google Scholar
Zhang, J. et al. C: N: P stoichiometry in China’s forests: From organs to ecosystems. Funct. Ecol. 32, 50–60 (2018).
Google Scholar
Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 1–20 (2017).
Google Scholar
Dirk Nikolaus, K. et al. Climatologies at high resolution for the earth’s land surface areas. EnviDat. https://doi.org/10.16904/envidat.332 (2021).
Kerkhoff, A. J., Enquist, B. J., Elser, J. J. & Fagan, W. F. Plant allometry, stoichiometry and the temperature-dependence of primary productivity. Global Ecol. Biogeogr. 14, 585–598 (2005).
Google Scholar
Wright, I. J. et al. Global climatic drivers of leaf size. Science 357, 917–921 (2017).
Google Scholar
Zhang, Y. et al. A global moderate resolution dataset of gross primary production of vegetation for 2000-2016. Sci. Data 4, 170165 (2017).
Google Scholar
Jolliffe, I. T. & Cadima, J. Principal component analysis: a review and recent developments. Philos. Trans. Soc. A Math. Phys. Eng. Sci. 374, 20150202 (2016).
Google Scholar
Wieczynski, D. J. et al. Climate shapes and shifts functional biodiversity in forests worldwide. Proc. Natl. Acad. Sci. 116, 587–592 (2019).
Google Scholar
Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Method Ecol. Evol. 7, 573–579 (2016).
Google Scholar
Bürkner, P.-C. Advanced bayesian multilevel modeling with the R Package brms. R J. 10, 395–411 (2018).
Bürkner, P.-C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Software 80, 1–28 (2017).
Google Scholar
Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).
Google Scholar
Vehtari, A. et al. loo: Efficient leave-one-out cross-validation and WAIC for Bayesian models. R package version 2, 1003 (2019).
Gabry, J. & Mahr, T. bayesplot: Plotting for Bayesian models. R package version 1 (2017).
Mac Nally, R. & Walsh, C. J. Hierarchical partitioning public-domain software. Biodivers. Conserv. 13, 659 (2004).
Google Scholar
Murray, K. & Conner, M. M. Methods to quantify variable importance: implications for the analysis of noisy ecological data. Ecology 90, 348–355 (2009).
Google Scholar
Yan, P., He, N., Yu, K., Xu, L. & Van Meerbeek, K. Integrating multiple functional traits to predict ecosystem productivity. figshare (2023). Dataset. https://doi.org/10.6084/m9.figshare.22081634.v1.
Source: Ecology - nature.com