in

Isolation and infection cycle of a polinton-like virus virophage in an abundant marine alga

  • Koonin, E. V. & Dolja, V. V. Virus world as an evolutionary network of viruses and capsidless selfish elements. Microbiol. Mol. Biol. Rev. 78, 278–303 (2014).

    Article 
    CAS 

    Google Scholar 

  • Pritham, E. J., Putliwala, T. & Feschotte, C. Mavericks, a novel class of giant transposable elements widespread in eukaryotes and related to DNA viruses. Gene 390, 3–17 (2007).

    Article 
    CAS 

    Google Scholar 

  • Kapitonov, V. V. & Jurka, J. Self-synthesizing DNA transposons in eukaryotes. Proc. Natl Acad. Sci. USA 103, 4540–4545 (2006).

    Article 
    CAS 

    Google Scholar 

  • Krupovic, M. & Koonin, E. V. Polintons: a hotbed of eukaryotic virus, transposon and plasmid evolution. Nat. Rev. Microbiol. 13, 105–115 (2015).

    Article 
    CAS 

    Google Scholar 

  • Koonin, E. V., Krupovic, M. & Yutin, N. Evolution of double-stranded DNA viruses of eukaryotes: from bacteriophages to transposons to giant viruses. Ann. N. Y. Acad. Sci. 1341, 10–24 (2015).

    Article 
    CAS 

    Google Scholar 

  • Yutin, N., Raoult, D. & Koonin, E. V. Virophages, polintons, and transpovirons: a complex evolutionary network of diverse selfish genetic elements with different reproduction strategies. Virol. J. 10, 158 (2013).

    Article 
    CAS 

    Google Scholar 

  • Krupovic, M., Bamford, D. H. & Koonin, E. V. Conservation of major and minor jelly-roll capsid proteins in Polinton (Maverick) transposons suggests that they are bona fide viruses. Biol. Direct 9, 6 (2014).

    Article 

    Google Scholar 

  • Yutin, N., Shevchenko, S., Kapitonov, V., Krupovic, M. & Koonin, E. V. A novel group of diverse Polinton-like viruses discovered by metagenome analysis. BMC Biol. 13, 95 (2015).

    Article 

    Google Scholar 

  • Bellas, C. M. & Sommaruga, R. Polinton-like viruses are abundant in aquatic ecosystems. Microbiome 9, 13 (2021).

    Article 
    CAS 

    Google Scholar 

  • Pagarete, A., Grébert, T., Stepanova, O., Sandaa, R.-A. & Bratbak, G. Tsv-N1: a novel DNA algal virus that infects Tetraselmis striata. Viruses 7, 3937–3953 (2015).

    Article 
    CAS 

    Google Scholar 

  • Bekliz, M., Colson, P. & La Scola, B. The expanding family of virophages. Viruses 8, 317 (2016).

    Article 

    Google Scholar 

  • Fischer, M. G. The virophage family Lavidaviridae. Curr. Issues Mol. Biol. https://doi.org/10.21775/cimb.040.001 (2021).

  • Desnues, C. et al. Provirophages and transpovirons as the diverse mobilome of giant viruses. Proc. Natl Acad. Sci. USA 109, 18078–18083 (2012).

    Article 
    CAS 

    Google Scholar 

  • Campos, R. K. et al. Samba virus: a novel mimivirus from a giant rain forest, the Brazilian Amazon. Virol. J. 11, 95 (2014).

    Article 

    Google Scholar 

  • Gaia, M. et al. Broad spectrum of mimiviridae virophage allows its isolation using a mimivirus reporter. PLoS ONE 8, e61912 (2013).

    Article 
    CAS 

    Google Scholar 

  • Hackl, T., Duponchel, S., Barenhoff, K., Weinmann, A. & Fischer, M. G. Virophages and retrotransposons colonize the genomes of a heterotrophic flagellate. eLife 10, e72674 (2021).

    Article 
    CAS 

    Google Scholar 

  • Yau, S. et al. Virophage control of Antarctic algal host-virus dynamics. Proc. Natl Acad. Sci. USA 108, 6163–6168 (2011).

    Article 
    CAS 

    Google Scholar 

  • Gong, C. et al. Novel virophages discovered in a freshwater lake in China. Front. Microbiol. 7, 5 (2016).

    Article 

    Google Scholar 

  • Zhou, J. et al. Three novel virophage genomes discovered from Yellowstone Lake metagenomes. J. Virol. 89, 1278–1285 (2014).

    Article 

    Google Scholar 

  • Yutin, N., Kapitonov, V. V. & Koonin, E. V. A new family of hybrid virophages from an animal gut metagenome. Biol. Direct 10, 19 (2015).

    Article 

    Google Scholar 

  • Stough, J. M. A. et al. Genome and environmental activity of a Chrysochromulina parva virus and its virophages. Front. Microbiol. 10, 703 (2019).

    Article 

    Google Scholar 

  • La Scola, B. et al. The virophage as a unique parasite of the giant mimivirus. Nature 455, 100–104 (2008).

    Article 

    Google Scholar 

  • Fischer, M. G. & Suttle, C. A. A virophage at the origin of large DNA transposons. Science 332, 231–234 (2011).

    Article 
    CAS 

    Google Scholar 

  • Gaia, M. et al. Zamilon, a novel virophage with Mimiviridae host specificity. PLoS ONE 9, e94923 (2014).

    Article 

    Google Scholar 

  • Mougari, S. et al. Guarani virophage, a new Sputnik-like isolate from a Brazilian lake. Front. Microbiol. 10, 1003 (2019).

    Article 

    Google Scholar 

  • Sheng, Y., Wu, Z., Xu, S. & Wang, Y. Isolation and identification of a large green alga virus (Chlorella Virus XW01) of Mimiviridae and its virophage (Chlorella Virus Virophage SW01) by using unicellular green algal cultures. J. Virol. 96, e02114–e02121 (2022).

    Article 

    Google Scholar 

  • Baudoux, A. C. & Brussaard, C. P. D. Characterization of different viruses infecting the marine harmful algal bloom species Phaeocystis globosa. Virology 341, 80–90 (2005).

    Article 
    CAS 

    Google Scholar 

  • Santini, S. et al. Genome of Phaeocystis globosa virus PgV-16T highlights the common ancestry of the largest known DNA viruses infecting eukaryotes. Proc. Natl Acad. Sci. USA 110, 10800–10805 (2013).

    Article 
    CAS 

    Google Scholar 

  • Tarutani, K., Nagasaki, K. & Yamaguchi, M. Virus adsorption process determines virus susceptibility in Heterosigma akashiwo (Raphidophyceae). Aquat. Microb. Ecol. 42, 209–213 (2006).

    Article 

    Google Scholar 

  • Gann, E. R., Gainer, P. J., Reynolds, T. B. & Wilhelm, S. W. Influence of light on the infection of Aureococcus anophagefferens CCMP 1984 by a ‘giant virus’. PLoS ONE 15, e0226758 (2020).

    Article 
    CAS 

    Google Scholar 

  • Van Etten, J. L., Burbank, D. E., Xia, Y. & Meints, R. H. Growth cycle of a virus, PBCV-1, that infects Chlorella-like algae. Virology 126, 117–125 (1983).

    Article 

    Google Scholar 

  • Boyer, M. et al. Mimivirus shows dramatic genome reduction after intraamoebal culture. Proc. Natl Acad. Sci. USA 108, 10296–10301 (2011).

    Article 
    CAS 

    Google Scholar 

  • Desnues, C. & Raoult, D. Inside the lifestyle of the virophage. Intervirology 53, 293–303 (2010).

    Article 
    CAS 

    Google Scholar 

  • Sobhy, H., Scola, B. L., Pagnier, I., Raoult, D. & Colson, P. Identification of giant Mimivirus protein functions using RNA interference. Front. Microbiol. 6, 345 (2015).

    Article 

    Google Scholar 

  • Fischer, M. G. & Hackl, T. Host genome integration and giant virus-induced reactivation of the virophage mavirus. Nature 540, 288–291 (2016).

    Article 
    CAS 

    Google Scholar 

  • Wodarz, D. Evolutionary dynamics of giant viruses and their virophages. Ecol. Evol. 3, 2103–2115 (2013).

    Article 

    Google Scholar 

  • Farr, G. A., Zhang, L. & Tattersall, P. Parvoviral virions deploy a capsid-tethered lipolytic enzyme to breach the endosomal membrane during cell entry. Proc. Natl Acad. Sci. USA 102, 17148–17153 (2005).

    Article 
    CAS 

    Google Scholar 

  • Suhre, K., Audic, S. & Claverie, J.-M. Mimivirus gene promoters exhibit an unprecedented conservation among all eukaryotes. Proc. Natl Acad. Sci. USA 102, 14689–14693 (2005).

    Article 
    CAS 

    Google Scholar 

  • Legendre, M. et al. mRNA deep sequencing reveals 75 new genes and a complex transcriptional landscape in Mimivirus. Genome Res. 20, 664–674 (2010).

    Article 
    CAS 

    Google Scholar 

  • Smith, D. R., Arrigo, K. R., Alderkamp, A.-C. & Allen, A. E. Massive difference in synonymous substitution rates among mitochondrial, plastid, and nuclear genes of Phaeocystis algae. Mol. Phylogenet. Evol. 71, 36–40 (2014).

    Article 
    CAS 

    Google Scholar 

  • Krupovic, M., Kuhn, J. H. & Fischer, M. G. A classification system for virophages and satellite viruses. Arch. Virol. 161, 233–247 (2016).

    Article 
    CAS 

    Google Scholar 

  • Suplatov, D. A., Besenmatter, W., Svedas, V. K. & Svendsen, A. Bioinformatic analysis of alpha/beta-hydrolase fold enzymes reveals subfamily-specific positions responsible for discrimination of amidase and lipase activities. Protein Eng. Des. Sel. 25, 689–697 (2012).

    Article 
    CAS 

    Google Scholar 

  • Burt, A. & Koufopanou, V. Homing endonuclease genes: the rise and fall and rise again of a selfish element. Curr. Opin. Genet. Dev. 14, 609–615 (2004).

    Article 
    CAS 

    Google Scholar 

  • Sullivan, M. B. DNA extraction of cesium chloride-purified viruses using wizard prep columns. Protocols https://doi.org/10.17504/protocols.io.c26yhd (2016).

  • González-Domínguez, J. & Schmidt, B. ParDRe: faster parallel duplicated reads removal tool for sequencing studies. Bioinformatics 32, 1562–1564 (2016).

    Article 

    Google Scholar 

  • Guillard, R. R. L. Culture of phytoplankton for feeding marine invertebrates. In Culture of Marine Invertebrate Animals: Proceedings—1st Conference on Culture of Marine Invertebrate Animals Greenport (eds Smith, W. L., & Chanley, M. H.) 29– 60 (Springer, 1975).

  • Cottrell, M. & Suttle, C. Wide-spread occurrence and clonal variation in viruses which cause lysis of a cosmopolitan, eukaryotic marine phytoplankter Micromonas pusilla. Mar. Ecol. Prog. Ser. 78, 1–9 (1991).

    Article 

    Google Scholar 

  • Krueger, F., James, F., Ewels, P., Afyounian, E. & Schuster-Boeckler, B. FelixKrueger/TrimGalore: v0.6.7 – DOI via Zenodo. https://doi.org/10.5281/zenodo.5127899 (2021).

  • Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    Article 
    CAS 

    Google Scholar 

  • Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article 
    CAS 

    Google Scholar 

  • Patel, A. et al. Virus and prokaryote enumeration from planktonic aquatic environments by epifluorescence microscopy with SYBR Green I. Nat. Protoc. 2, 269–276 (2007).

    Article 
    CAS 

    Google Scholar 

  • Bolte, S. & Cordelières, F. P. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 224, 213–232 (2006).

    Article 
    CAS 

    Google Scholar 

  • Brussaard, C. P. D. Optimization of procedures for counting viruses by flow cytometry. Appl. Environ. Microbiol. 70, 1506–1513 (2004).

    Article 
    CAS 

    Google Scholar 

  • Kirzner, S., Barak, E. & Lindell, D. Variability in progeny production and virulence of cyanophages determined at the single-cell level. Environ. Microbiol. Rep. 8, 605–613 (2016).

    Article 

    Google Scholar 

  • Ziv, I. et al. A perturbed ubiquitin landscape distinguishes between ubiquitin in trafficking and in proteolysis. Mol. Cell. Proteomics 10, M111.009753 (2011).

  • HaileMariam, M. et al. S-Trap, an ultrafast sample-preparation approach for shotgun proteomics. J. Proteome Res. 17, 2917–2924 (2018).

    Article 
    CAS 

    Google Scholar 

  • Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).

    Article 
    CAS 

    Google Scholar 

  • Kong, A. T., Leprevost, F. V., Avtonomov, D. M., Mellacheruvu, D. & Nesvizhskii, A. I. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat. Methods 14, 513–520 (2017).

    Article 
    CAS 

    Google Scholar 

  • Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).

    Article 
    CAS 

    Google Scholar 

  • Lechner, M. et al. Proteinortho: detection of (Co-)orthologs in large-scale analysis. BMC Bioinformatics 12, 124 (2011).

    Article 

    Google Scholar 

  • Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).

    Article 
    CAS 

    Google Scholar 

  • Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction termed MaxLFQ. Mol. Cell. Proteomics 13, 2513–2526 (2014).

    Article 
    CAS 

    Google Scholar 

  • Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    CAS 

    Google Scholar 

  • O’Connell, J. et al. NxTrim: optimized trimming of Illumina mate pair reads. Bioinformatics 31, 2035–2037 (2015).

    Article 

    Google Scholar 

  • Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    Article 
    CAS 

    Google Scholar 

  • Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1, 2047-217X-1–18 (2012).

  • Chevreux, B., Wetter, T. & Suhai, S. Genome sequence assembly using trace signals and additional sequence information. In Proc. German Conference on Bioinformatics 45–56 (Fachgruppe Bioinformatik, 1999).

  • Deng, Z. & Delwart, E. ContigExtender: a new approach to improving de novo sequence assembly for viral metagenomics data. BMC Bioinformatics 22, 119 (2021).

    Article 
    CAS 

    Google Scholar 

  • Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).

    Article 

    Google Scholar 

  • Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

    Article 
    CAS 

    Google Scholar 

  • Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    Article 
    CAS 

    Google Scholar 

  • Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Article 
    CAS 

    Google Scholar 

  • Hoang, D. T., Chernomor, O., von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).

    Article 
    CAS 

    Google Scholar 

  • Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).

    Article 
    CAS 

    Google Scholar 

  • Barbera, P. et al. EPA-ng: massively parallel evolutionary placement of genetic sequences. Syst. Biol. 68, 365–369 (2019).

    Article 

    Google Scholar 

  • Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    Article 

    Google Scholar 

  • Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).

    Article 
    CAS 

    Google Scholar 

  • Steinegger, M. et al. HH-suite3 for fast remote homology detection and deep protein annotation. BMC Bioinformatics 20, 473 (2019).

    Article 

    Google Scholar 

  • Enright, A. J., Van Dongen, S. & Ouzounis, C. A. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30, 1575–1584 (2002).

    Article 
    CAS 

    Google Scholar 

  • Bolduc, B. et al. vConTACT: an iVirus tool to classify double-stranded DNA viruses that infect Archaea and Bacteria. PeerJ 5, e3243 (2017).

    Article 

    Google Scholar 

  • Zimmermann, L. et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J. Mol. Biol. 430, 2237–2243 (2018).

    Article 
    CAS 

    Google Scholar 

  • Heger, A. & Holm, L. Rapid automatic detection and alignment of repeats in protein sequences. Proteins 41, 224–237 (2000).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1002/1097-0134(20001101)41:23.0.CO;2-Z” data-track-action=”article reference” href=”https://doi.org/10.1002%2F1097-0134%2820001101%2941%3A2%3C224%3A%3AAID-PROT70%3E3.0.CO%3B2-Z” aria-label=”Article reference 83″ data-doi=”10.1002/1097-0134(20001101)41:23.0.CO;2-Z”>Article 
    CAS 

    Google Scholar 

  • Chase, E., Desnues, C. & Blanc, G. Integrated viral elements unveil the dual lifestyle of Tetraselmis spp. polinton-like viruses. Virus Evol. 8, veac068 (2022).

  • Egge, E. S., Eikrem, W. & Edvardsen, B. Deep-branching novel lineages and high diversity of haptophytes in the Skagerrak (Norway) uncovered by 454 pyrosequencing. J. Eukaryot. Microbiol. 62, 121–140 (2015).

    Article 
    CAS 

    Google Scholar 

  • Hovde, B. T. et al. Chrysochromulina: genomic assessment and taxonomic diagnosis of the type species for an oleaginous algal clade. Algal Res. 37, 307–319 (2019).

    Article 

    Google Scholar 

  • Andersen, R. A., Bailey, J. C., Decelle, J. & Probert, I. Phaeocystis rex sp. nov. (Phaeocystales, Prymnesiophyceae): a new solitary species that produces a multilayered scale cell covering. Eur. J. Phycol. 50, 207–222 (2015).

    Article 

    Google Scholar 

  • Stepanova, O. A. Black Sea algal viruses. Russ. J. Mar. Biol. 42, 123–127 (2016).

    Article 

    Google Scholar 

  • Alarcón-Schumacher, T., Guajardo-Leiva, S., Antón, J. & Díez, B. Elucidating viral communities during a phytoplankton bloom on the West Antarctic Peninsula. Front. Microbiol. 10, 1014 (2019).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Formation of necromass-derived soil organic carbon determined by microbial death pathways

    Mycelial nutrient transfer promotes bacterial co-metabolic organochlorine pesticide degradation in nutrient-deprived environments