in

Large sinuous rivers are slowing down in a warming Arctic

[adace-ad id="91168"]
  • Gillet, N. et al. Canada’s Changing Climate Report (Government of Canada, 2019).

  • Bintanja, R. The impact of Arctic warming on increased rainfall. Sci. Rep. 8, 6–11 (2018).

    Article 

    Google Scholar 

  • Camill, P. Permafrost thaw accelerates in boreal peatlands during late-20th century climate warming. Clim. Change 68, 135–152 (2005).

    Article 
    CAS 

    Google Scholar 

  • Hollesen, J., Matthiesen, H., Møller, A. B. & Elberling, B. Permafrost thawing in organic Arctic soils accelerated by ground heat production. Nat. Clim. Change 5, 574–578 (2015).

    Article 

    Google Scholar 

  • Walvoord, M. A. & Striegl, R. G. Increased groundwater to stream discharge from permafrost thawing in the Yukon River basin: potential impacts on lateral export of carbon and nitrogen. Geophys. Res. Lett. 34, L12402 (2007).

  • Pearson, R. G. et al. Shifts in Arctic vegetation and associated feedbacks under climate change. Nat. Clim. Change 3, 673–677 (2013).

    Article 

    Google Scholar 

  • Heijmans, M. M. P. D. et al. Tundra vegetation change and impacts on permafrost. Nat. Rev. Earth Environ. 3, 68–84 (2022).

    Article 

    Google Scholar 

  • Tape, K., Sturm, M. & Racine, C. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob. Change Biol. 12, 686–702 (2006).

    Article 

    Google Scholar 

  • Mekonnen, Z. A. et al. Arctic tundra shrubification: a review of mechanisms and impacts on ecosystem carbon balance. Environ. Res. Lett. 16, 053001 (2021).

    Article 
    CAS 

    Google Scholar 

  • Shevtsova, I. et al. Strong shrub expansion in tundra-taiga, tree infilling in taiga and stable tundra in central Chukotka (north-eastern Siberia) between 2000 and 2017. Environ. Res. Lett. 15, 085006 (2020).

    Article 

    Google Scholar 

  • Wild, B. et al. Rivers across the Siberian Arctic unearth the patterns of carbon release from thawing permafrost. Proc. Natl Acad. Sci. USA 116, 10280–10285 (2019).

    Article 
    CAS 

    Google Scholar 

  • Rowland, J. C. et al. Arctic landscapes in transition: responses to thawing permafrost. Eos 91, 229–230 (2010).

    Article 

    Google Scholar 

  • Walcker, R., Corenblit, D., Julien, F., Martinez, J. M. & Steiger, J. Contribution of meandering rivers to natural carbon fluxes: evidence from the Ucayali River, Peruvian Amazonia. Sci. Total Environ. 776, 146056 (2021).

    Article 
    CAS 

    Google Scholar 

  • Torres, M. A. et al. Model predictions of long-lived storage of organic carbon in river deposits. Earth Surf. Dyn. 5, 711–730 (2017).

    Article 

    Google Scholar 

  • Allen, J. R. Sedimentary structures: their character and physical basis. Dev. Sedimentol. 30B, 1–593 (1982).

    Google Scholar 

  • Howard, A. D. & Knutson, T. R. Sufficient conditions for river meandering: a simulation approach. Water Resour. Res. 20, 1659–1667 (1984).

    Article 

    Google Scholar 

  • Chassiot, L., Lajeunesse, P. & Bernier, J. F. Riverbank erosion in cold environments: review and outlook. Earth-Sci. Rev. 207, 103231 (2020).

    Article 

    Google Scholar 

  • Constantine, J. A., Dunne, T., Ahmed, J., Legleiter, C. & Lazarus, E. D. Sediment supply as a driver of river meandering and floodplain evolution in the Amazon Basin. Nat. Geosci. 7, 899–903 (2014).

    Article 
    CAS 

    Google Scholar 

  • Horton, A. J. et al. Modification of river meandering by tropical deforestation. Geology 45, 511–514 (2017).

    Article 

    Google Scholar 

  • Ielpi, A. & Lapôtre, M. G. A. A tenfold slowdown in river meander migration driven by plant life. Nat. Geosci. 13, 82–86 (2020).

    Article 
    CAS 

    Google Scholar 

  • Kokelj, S. V., Lantz, T. C., Tunnicliffe, J., Segal, R. & Lacelle, D. Climate-driven thaw of permafrost preserved glacial landscapes, northwestern Canada. Geology 45, 371–374 (2017).

    Article 

    Google Scholar 

  • Zhang, T. et al. Warming-driven erosion and sediment transport in cold regions. Nat. Rev. Earth Environ. 3, 832–851(2022).

  • Brown, D. R. N. et al. Implications of climate variability and changing seasonal hydrology for subarctic riverbank erosion. Clim. Change 162, 385–404 (2020).

    Article 

    Google Scholar 

  • Gautier, E. et al. Fifty-year dynamics of the Lena River islands (Russia): spatio-temporal pattern of large periglacial anabranching river and influence of climate change. Sci. Total Environ. 783, 147020 (2021).

    Article 
    CAS 

    Google Scholar 

  • Piliouras, A., Lauzon, R. & Rowland, J. C. Unraveling the combined effects of ice and permafrost on Arctic delta morphodynamics. J. Geophys. Res. Earth Surf. 126, e2020JF005706 (2021).

  • Matsubara, Y. et al. Geomorphology river meandering on Earth and Mars: a comparative study of Aeolis Dorsa meanders, Mars and possible terrestrial analogs of the Usuktuk River, AK, and the Quinn River, NV. Geomorphology 240, 102–120 (2015).

    Article 

    Google Scholar 

  • Lininger, K. B. & Wohl, E. Floodplain dynamics in North American permafrost regions under a warming climate and implications for organic carbon stocks: a review and synthesis. Earth-Sci. Rev. 193, 24–44 (2019).

    Article 
    CAS 

    Google Scholar 

  • Treat, C. C. & Jones, M. C. Near-surface permafrost aggradation in Northern Hemisphere peatlands shows regional and global trends during the past 6000 years. Holocene 28, 998–1010 (2018).

    Article 

    Google Scholar 

  • Lapôtre, M. G. A., Ielpi, A., Lamb, M. P., Williams, R. M. E. & Knoll, A. H. Model for the formation of single-thread rivers in barren landscapes and implications for pre-Silurian and martian fluvial deposits. J. Geophys. Res. Earth Surf. 124, 2757–2777 (2019).

    Article 

    Google Scholar 

  • Wang, G., Hu, H. & Li, T. The influence of freeze-thaw cycles of active soil layer on surface runoff in a permafrost watershed. J. Hydrol. 375, 438–449 (2009).

    Article 

    Google Scholar 

  • Tananaev, N. & Lotsari, E. Defrosting northern catchments: fluvial effects of permafrost degradation. Earth-Sci. Rev. 228, 103996 (2022).

    Article 

    Google Scholar 

  • Tarnocai, C., Nixon, M. F. & Kutny, L. Circumpolar-active-layer-monitoring (CALM) sites in the Mackenzie Valley, northwestern Canada. Permafr. Periglac. Process. 15, 141–153 (2004).

    Article 

    Google Scholar 

  • Nguyen, T.-N., Burn, C. R., King, D. J. & Smith, S. L. Estimating the extent of near-surface permafrost using remote sensing, Mackenzie Delta, Northwest Territories. Permafr. Periglac. Process. 20, 141–153 (2009).

    Article 

    Google Scholar 

  • Stephani, E., Drage, J., Miller, D., Jones, B. M. & Kanevskiy, M. Taliks, cryopegs, and permafrost dynamics related to channel migration, Colville River Delta, Alaska. Permafr. Periglac. Process. 31, 239–254 (2020).

    Article 

    Google Scholar 

  • Walvoord, M. A. & Kurylyk, B. L. Hydrologic impacts of thawing permafrost—a review. Vadose Zo. J. 15, vzj2016.01.0010 (2016).

    Article 

    Google Scholar 

  • Leopold, L. B., Wolman, M. G. & Miller, J. P. Fluvial Processes in Geomorphology (Dover, 1964).

  • Sylvester, Z., Durkin, P. & Covault, J. A. High curvatures drive river meandering. Geology 47, 263–266 (2019).

    Article 

    Google Scholar 

  • Lageweg, W. I. van de et al. Bank pull or bar push: what drives scroll-bar formation in meandering rivers? Geology 42, 319–322 (2014).

  • Liljedahl, A. K., Timling, I., Frost, G. V. & Daanen, R. P. Arctic riparian shrub expansion indicates a shift from streams gaining water to those that lose flow. Commun. Earth Environ. 1, 50 (2020).

    Article 

    Google Scholar 

  • Parker, G. et al. A new framework for modeling the migration of meandering rivers. Earth Surf. Process. Landf. 36, 70–86 (2011).

    Article 

    Google Scholar 

  • Blanckaert, K. Topographic steering, flow recirculation, velocity redistribution, and bed topography in sharp meander bends. Water Resour. Res. 46, W09506 (2010).

    Google Scholar 

  • Ielpi, A. & Lapôtre, M. G. A. Biotic forcing militates against river meandering in the modern Bonneville Basin of Utah. Sedimentology 66, 1896–1929 (2019).

    Article 

    Google Scholar 

  • Fox, G. A. et al. Measuring streambank erosion due to ground water seepage: correlation to bank pore water pressure, precipitation and stream stage. Earth Surf. Process. Landf. 1573, 1558–1573 (2007).

    Article 

    Google Scholar 

  • O’Neill, H. B., Smith, S. L. & Duchesne, C. Long-term permafrost degradation and thermokarst subsidence in the Mackenzie Delta Area indicated by thaw tube measurements. In 18th International Conference on Cold Regions Engineering and 8th Canadian Permafrost Conference (eds Bilodeau, J.-P. et al.) 643–651 (ASCE, 2019).

  • Qiu, J. Thawing permafrost reduces river runoff. Nature https://doi.org/10.1038/nature.2012.9749 (2012).

  • Zheng, L., Overeem, I., Wang, K. & Clow, G. D. Changing Arctic river dynamics cause localized permafrost thaw. J. Geophys. Res. Earth Surf. 124, 2324–2344 (2019).

    Article 

    Google Scholar 

  • Jorgenson, M. T. et al. An Ecological Land Survey for the Colville River Delta, Alaska, 1996 (ABR, Inc., 1997).

  • Park, H., Yoshikawa, Y., Yang, D. & Oshima, K. Warming water in arctic terrestrial rivers under climate change. J. Hydrometeorol. 18, 1983–1995 (2017).

    Article 

    Google Scholar 

  • Roy-Leveillee, P. & Burn, C. R. Near-shore talik development beneath shallow water in expanding thermokarst lakes, Old Crow Flats, Yukon. J. Geophys. Res. Earth Surf. 122, 1070–1089 (2017).

    Article 

    Google Scholar 

  • Langer, M. et al. Rapid degradation of permafrost underneath waterbodies in tundra landscapes—toward a representation of thermokarst in land surface models. J. Geophys. Res. Earth Surf. 121, 2446–2470 (2016).

    Article 

    Google Scholar 

  • O’Neill, H. B., Roy-Leveillee, P., Lebedeva, L. & Ling, F. Recent advances (2010–2019) in the study of taliks. Permafr. Periglac. Process. 31, 346–357 (2020).

    Article 

    Google Scholar 

  • French, H. The Periglacial Environment (Wiley, 2017).

  • Prowse, T. D. River-ice ecology. I: Hydrologic, geomorphic, and water-quality aspects. J. Cold Reg. Eng. 15, 1–16 (2001).

    Article 
    CAS 

    Google Scholar 

  • Yang, X., Pavelsky, T. M. & Allen, G. H. The past and future of global river ice. Nature 577, 69–73 (2020).

    Article 
    CAS 

    Google Scholar 

  • Brown, J., Ferrians, O. J. Jr, Heginbottom, J. A. & Melkinov, E. S. Circum-Arctic Map of Permafrost and Ground-Ice Conditions (USGS, 1997); https://pubs.usgs.gov/cp/45/report.pdf

  • Ielpi, A., Lapotre, M. G. A., Finotello, A. & Roy-Léveillée, P. Large sinuous rivers are slowing down in a warming Arctic. Zenodo https://doi.org/10.5281/zenodo.7556050 (2023).

  • Leopold, L. B. & Maddock, T. J. The Hydraulic Geometry of Stream Channels and Some Physiographic Implications (USGS, 1953).

  • Giorgino, T. Computing and visualizing dynamic time warping alignments in R: the dtw package. J. Stat. Softw. 31, 1–24 (2009).

    Article 

    Google Scholar 

  • Donovan, M., Belmont, P. & Sylvester, Z. Evaluating the relationship between meander-bend curvature, sediment supply, and migration rates. J. Geophys. Res. Earth Surf. 126, e2020JF006058 (2021).

    Article 

    Google Scholar 

  • Sylvester, Z., Durkin, P. R., Hubbard, S. M. & Mohrig, D. Autogenic translation and counter point bar deposition in meandering rivers. GSA Bull. 133, 2439–2456 (2021).

  • Titov, M. Code for dynamic time warping analysis. GitHub http://mlt.github.io/QGIS-Processing-tools/tags/dtw.html (2015).

  • Finotello, A., D’Alpaos, A., Lazarus, E. D. & Lanzoni, S. High curvatures drive river meandering: COMMENT. Geology 47, e485 (2019).

  • Finotello, A. et al. American Geophysical Union, Fall Meeting Abstracts (AGU, 2020).

  • Congedo, L. Semi-automatic classification plugin: a Python tool for the download and processing of remote sensing images in QGIS. J. Open Source Softw. 6, 3172 (2021).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Working to make nuclear energy more competitive

    Titanic robots make farming more sustainable