in

Late Cenozoic cooling restructured global marine plankton communities

  • Jonkers, L., Hillebrand, H. & Kucera, M. Global change drives modern plankton communities away from the pre-industrial state. Nature 570, 372–375 (2019).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Barton, A. D., Irwin, A. J., Finkel, Z. V. & Stock, C. A. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. Proc. Natl Acad. Sci. USA 113, 2964–2969 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Beaugrand, G., Reid, P. C., Ibanez, F., Lindley, J. A. & Edwards, M. Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296, 1692–1694 (2002).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Cheung, W. W., Watson, R. & Pauly, D. Signature of ocean warming in global fisheries catch. Nature 497, 365–368 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Herbert-Read, J. E. et al. A global horizon scan of issues impacting marine and coastal biodiversity conservation. Nat. Ecol. Evol. 6, 1262–1270 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Yasuhara, M. & Deutsch, C. A. Paleobiology provides glimpses of future ocean. Science 375, 25–26 (2022).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Fenton, I. S. et al. Triton, a new species-level database of Cenozoic planktonic foraminiferal occurrences. Sci. Data 8, 160 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Strack, A., Jonkers, L., Rillo, M. C., Hillebrand, H. & Kucera, M. Plankton response to global warming is characterized by non-uniform shifts in assemblage composition since the last ice age. Nat. Ecol. Evol. 6, 1871–1880 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Mokany, K. & Ferrier, S. Predicting impacts of climate change on biodiversity: a role for semi‐mechanistic community‐level modelling. Divers. Distrib. 17, 374–380 (2011).

    Article 

    Google Scholar 

  • Pörtner, H.-O. et al. eds IPCC: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2022).

  • Pontarp, M. et al. The latitudinal diversity gradient: novel understanding through mechanistic eco-evolutionary models. Trends Ecol. Evol. 34, 211–223 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Schumm, M. et al. Common latitudinal gradients in functional richness and functional evenness across marine and terrestrial systems. Proc. R. Soc. B 286, 20190745 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rutherford, S., D’Hondt, S. & Prell, W. Environmental controls on the geographic distribution of zooplankton diversity. Nature 400, 749–753 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Worm, B., Lotze, H. K. & Myers, R. A. Predator diversity hotspots in the blue ocean. Proc. Natl Acad. Sci. USA 100, 9884–9888 (2003).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Fenton, I. S., Pearson, P. N., Dunkley Jones, T. & Purvis, A. Environmental predictors of diversity in recent planktonic foraminifera as recorded in marine sediments. PLoS ONE 11, e0165522 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chaudhary, C., Saeedi, H. & Costello, M. J. Bimodality of latitudinal gradients in marine species richness. Trends Ecol. Evol. 31, 670–676 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Chaudhary, C., Richardson, A. J., Schoeman, D. S. & Costello, M. J. Global warming is causing a more pronounced dip in marine species richness around the equator. Proc. Natl Acad. Sci. USA 118, e2015094118 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rillo, M. C., Miller, C. G., Kučera, M. & Ezard, T. H. G. Intraspecific size variation in planktonic foraminifera cannot be consistently predicted by the environment. Ecol. Evol. 10, 11579–11590 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yasuhara, M. et al. Past and future decline of tropical pelagic biodiversity. Proc. Natl Acad. Sci. USA 117, 12891–12896 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thomas, E. Descent into the icehouse. Geology 36, 191–192 (2008).

    Article 
    ADS 

    Google Scholar 

  • Fenton, I. S. et al. The impact of Cenozoic cooling on assemblage diversity in planktonic foraminifera. Phil. Trans. R. Soc. B 371, 20150224 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Crame, J. A. Early Cenozoic evolution of the latitudinal diversity gradient. Earth Sci. Rev. 202, 103090 (2020).

    Article 

    Google Scholar 

  • Yasuhara, M. et al. Time machine biology. Oceanography 33, 16–28 (2020).

    Article 

    Google Scholar 

  • Alegret, L., Arreguín-Rodríguez, G. J., Trasviña-Moreno, C. A. & Thomas, E. Turnover and stability in the deep sea: benthic foraminifera as tracers of Paleogene global change. Global Planet. Change 196, 103372 (2021).

    Article 

    Google Scholar 

  • Gaskell, D. E. et al. The latitudinal temperature gradient and its climate dependence as inferred from foraminiferal δ18O over the past 95 million years. Proc. Natl Acad. Sci. USA 119, e2111332119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mannion, P. D., Upchurch, P., Benson, R. B. & Goswami, A. The latitudinal biodiversity gradient through deep time. Trends Ecol. Evol. 29, 42–50 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Raja, N. B. & Kiessling, W. Out of the extratropics: the evolution of the latitudinal diversity gradient of Cenozoic marine plankton. Proc. R. Soc. B 288, 20210545 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Herbert, T. D. et al. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 9, 843–847 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Steinthorsdottir, M. et al. The Miocene: the future of the past. Paleoceanogr. Paleoclimatology 36, e2020PA004037 (2021).

    Article 

    Google Scholar 

  • Brown, R. M., Chalk, T. B., Crocker, A. J., Wilson, P. A. & Foster, G. L. Late Miocene cooling coupled to carbon dioxide with Pleistocene-like climate sensitivity. Nat. Geosci. 15, 664–670 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Guillermic, M., Misra, S., Eagle, R. & Tripati, A. Atmospheric CO2 estimates for the Miocene to Pleistocene based on foraminiferal δ11B at Ocean Drilling Program Sites 806 and 807 in the Western Equatorial Pacific. Clim. Past 18, 183–207 (2022).

    Article 

    Google Scholar 

  • Jablonski, D., Roy, K. & Valentine, J. W. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314, 102–106 (2006).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Yasuhara, M., Hunt, G., Dowsett, H. J., Robinson, M. M. & Stoll, D. K. Latitudinal species diversity gradient of marine zooplankton for the last three million years. Ecol. Lett. 15, 1174–1179 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Ezard, T. H. G., Aze, T., Pearson, P. N. & Purvis, A. Interplay between changing climate and species’ ecology drives macroevolutionary dynamics. Science 332, 349–351 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Peters, S. E., Kelly, D. C. & Fraass, A. J. Oceanographic controls on the diversity and extinction of planktonic foraminifera. Nature 493, 398–401 (2013).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Woodhouse, A. et al. Adaptive ecological niche migration does not negate extinction susceptibility. Sci. Rep. 11, 15411 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yasuhara, M., Tittensor, D. P., Hillebrand, H. & Worm, B. Combining marine macroecology and palaeoecology in understanding biodiversity: microfossils as a model. Biol. Rev. 92, 199–215 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Bindoff, N. L. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) (IPCC, Cambridge Univ. Press, 2019).

  • Aze, T. et al. A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biol. Rev. 86, 900–927 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Delmas, E. et al. Analysing ecological networks of species interactions. Biol. Rev. 94, 16–36 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Rojas, A., Calatayud, J., Kowalewski, M., Neuman, M. & Rosvall, M. A multiscale view of the Phanerozoic fossil record reveals the three major biotic transitions. Commun. Biol. 4, 309 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Swain, A., Devereux, M. & Fagan, W. F. Deciphering trophic interactions in a mid-Cambrian assemblage. iScience 24, 102271 (2021).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shaw, J. O. et al. Disentangling ecological and taphonomic signals in ancient food webs. Paleobiology 47, 385–401 (2021).

    Article 

    Google Scholar 

  • Swain, A., Maccracken, S., Fagan, W. & Labandeira, C. Understanding the ecology of host plant–insect herbivore interactions in the fossil record through bipartite networks. Paleobiology 48, 239–260 (2022).

    Article 

    Google Scholar 

  • Poisot, T., Canard, E., Mouquet, N. & Hochberg, M. E. A comparative study of ecological specialization estimators. Methods Ecol. Evol. 3, 537–544 (2012).

    Article 

    Google Scholar 

  • Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Boscolo-Galazzo, F. and Crichton, K.A. et al. Temperature controls carbon cycling and biological evolution in the ocean twilight zone. Science 371, 1148–1152 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Boscolo-Galazzo, F. et al. Late Neogene evolution of modern deep-dwelling plankton. Biogeosciences 19, 743–762 (2022).

    Article 
    ADS 

    Google Scholar 

  • Keller, G. in The Miocene Ocean: Paleoceanography and Biogeography Vol. 163, 177–196 (Geological Society of America, 1985).

  • Holbourn, A. E. et al. Late Miocene climate cooling and intensification of southeast Asian winter monsoon. Nat. Commun. 9, 1584 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Willeit, M., Ganopolski, A., Calov, R., Robinson, A. & Maslin, M. The role of CO2 decline for the onset of Northern Hemisphere glaciation. Quat. Sci. Rev. 119, 22–34 (2015).

    Article 
    ADS 

    Google Scholar 

  • Hayashi, T. et al. Latest Pliocene Northern Hemisphere glaciation amplified by intensified Atlantic meridional overturning circulation. Commun. Earth Environ. 1, 25–10 (2020).

    Article 
    ADS 

    Google Scholar 

  • Lam, A. R., Crundwell, M. P., Leckie, R. M., Albanese, J. & Uzel, J. P. Diachroneity rules the mid-latitudes: a test case using late Neogene planktic foraminifera across the Western Pacific. Geosciences 12, 190 (2022).

    Article 
    ADS 

    Google Scholar 

  • Lowery, C. M., Bown, P. R., Fraass, A. J. & Hull, P. M. Ecological response of plankton to environmental change: thresholds for extinction. Annu. Rev. Earth Planet. Sci. 48, 403–429 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Rillo, M. C. et al. On the mismatch in the strength of competition among fossil and modern species of planktonic Foraminifera. Global Ecol. Biogeogr. 28, 1866–1878 (2019).

    Article 

    Google Scholar 

  • Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).

    Article 
    ADS 

    Google Scholar 

  • Monllor-Hurtado, A., Pennino, M. G. & Sanchez-Lizaso, J. L. Shift in tuna catches due to ocean warming. PLoS ONE 12, e0178196 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Mora, C. et al. Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biol. 11, e1001682 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Renaudie, J., Lazarus, D.B. & Diver, P. NSB (Neptune Sandbox Berlin): an expanded and improved database of marine planktonic microfossil data and deep-sea stratigraphy. Palaeontol. Electron. 23, p.a11 (2020).

    Google Scholar 

  • Pearson, P. N. in Atlas of Oligocene Planktonic Foraminifera (eds Wade, B. S. et al) 415–428 (Cushman Foundation of Foraminiferal Research, 2018).

  • Liow, L. H., Skaug, H. J., Ergon, T. & Schweder, T. Global occurrence trajectories of microfossils: environmental volatility and the rise and fall of individual species. Paleobiology 36, 224–252 (2010).

    Article 

    Google Scholar 

  • Lazarus, D., Weinkauf, M. & Diver, P. Pacman profiling: a simple procedure to identify stratigraphic outliers in high-density deep-sea microfossil data. Paleobiology 38, 144–161 (2012).

    Article 

    Google Scholar 

  • Woodhouse, A. et al. Paleoecology and evolutionary response of planktonic foraminifera to the Plio-Pleistocene intensification of Northern Hemisphere glaciations. Preprint at EGUsphere https://doi.org/10.5194/egusphere-2022-844 (2022).

  • Woodhouse, A. et al. Paleoecology and evolutionary response of planktonic foraminifera to the mid-Pliocene Warm Period and Plio-Pleistocene bipolar ice sheet expansion. Biogeosciences 20, 121–139 (2023).

    Article 
    ADS 

    Google Scholar 

  • Dormann, C. F., Fründ, J., Blüthgen, N. & Gruber, B. Indices, graphs and null models: analyzing bipartite ecological networks. Op. Ecol. J. 2, 7–24 (2009).

    Article 

    Google Scholar 

  • Swain, A. et al. Sampling bias and the robustness of ecological metrics for plant-damage-type association networks. Ecology https://doi.org/10.1002/ecy.3922 (2022).

  • Julliard, R., Clavel, J., Devictor, V., Jiguet, F. & Couvet, D. Spatial segregation of specialists and generalists in bird communities. Ecol. Lett. 9, 1237–1244 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Vaughan, I. P. et al. econullnetr: an R package using null models to analyse the structure of ecological networks and identify resource selection. Methods Ecol. Evol. 9, 728–733 (2018).

    Article 
    MathSciNet 

    Google Scholar 


  • Source: Ecology - nature.com

    Responsive design meets responsibility for the planet’s future

    Featured video: Investigating our blue ocean planet