in

Localized coevolution between microbial predator and prey alters community-wide gene expression and ecosystem function

  • Ehrlich PR, Raven PH. Butterflies and plants: a study in coevolution. Evolution. 1964;18:586–608.

    Article 

    Google Scholar 

  • Marston MF, Pierciey FJ Jr, Shepard A, Gearin G, Qi J, Yandava C, et al. Rapid diversification of coevolving marine Synechococcus and a virus. Proc Natl Acad Sci USA. 2012;109:4544–9.

    Article 
    CAS 

    Google Scholar 

  • Hall AR, Scanlan PD, Buckling A. Bacteria-phage coevolution and the emergence of generalist pathogens. Am Nat. 2011;177:44–53.

    Article 

    Google Scholar 

  • Badger MR, Andrews TJ, Whitney SM, Ludwig M, Yellowlees DC, Leggat W, et al. The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO2-concentrating mechanisms in algae. Can J Bot. 1998;76:1052–71.

    CAS 

    Google Scholar 

  • Schluter D. The ecology of adaptive radiation. Oxford, UK: University Press; 2000.

  • Buckling A, Maclean CR, Brockhurst MA, Colegrave N. The Beagle in a bottle. Nature. 2009;457:824–9.

    Article 
    CAS 

    Google Scholar 

  • Thompson JN. The coevolutionary process. Chicago, USA: University of Chicago Press; 1994.

  • Vallina SM, Follows MJ, Dutkiewicz S, Montoya JM, Cermeno P, Loreau M. Global relationship between phytoplankton diversity and productivity in the ocean. Nat Commun. 2014;5:4299.

    Article 
    CAS 

    Google Scholar 

  • Jürgens K, Matz C. Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Antonie Van Leeuwenhoek. 2002;81:413–34.

    Article 

    Google Scholar 

  • Wildschutte H, Wolfe DM, Tamewitz A, Lawrence JG. Protozoan predation, diversifying selection, and the evolution of antigenic diversity in Salmonella. Proc Natl Acad Sci USA. 2004;101:10644–9.

    Article 
    CAS 

    Google Scholar 

  • Thompson JN. The geographic mosaic of coevolution. Chicago, USA: University of Chicago Press; 2005.

  • Hahn MW, Höfle MG. Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microbiol Ecol. 2001;35:113–21.

    Article 
    CAS 

    Google Scholar 

  • Fuhrman JA, Noble RT. Viruses and protists cause similar bacterial mortality in coastal seawater. Limnol Oceanogr. 1995;40:1236–42.

    Article 

    Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F. The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser. 1983;10:257–63.

    Article 

    Google Scholar 

  • Lankau RA, Strauss SY. Mutual feedbacks maintain both genetic and species diversity in a plant community. Science. 2007;317:1561–3.

    Article 
    CAS 

    Google Scholar 

  • Hogle SL, Hepolehto I, Ruokolainen L, Cairns J, Hiltunen T. Effects of phenotypic variation on consumer coexistence and prey community structure. Ecol Lett. 2022:25;307–19.

  • Yoshida T, Jones LE, Ellner SP, Fussmann GF, Hairston NG Jr. Rapid evolution drives ecological dynamics in a predator-prey system. Nature. 2003;424:303–6.

    Article 
    CAS 

    Google Scholar 

  • McClean D, McNally L, Salzberg LI, Devine KM, Brown SP, Donohue I. Single gene locus changes perturb complex microbial communities as much as apex predator loss. Nat Commun. 2015;6:8235.

    Article 

    Google Scholar 

  • Gómez P, Paterson S, De Meester L, Liu X, Lenzi L, Sharma MD, et al. Local adaptation of a bacterium is as important as its presence in structuring a natural microbial community. Nat Commun. 2016;7:12453.

    Article 

    Google Scholar 

  • Middelboe M, Holmfeldt K, Riemann L, Nybroe O, Haaber J. Bacteriophages drive strain diversification in a marine Flavobacterium: Implications for phage resistance and physiological properties. Environ Microbiol. 2009;11:1971–82.

    Article 
    CAS 

    Google Scholar 

  • Lennon JT, Martiny JBH. Rapid evolution buffers ecosystem impacts of viruses in a microbial food web. Ecol Lett. 2008;11:1178–88.

    Article 

    Google Scholar 

  • Cairns J, Jokela R, Hultman J, Tamminen M, Virta M, Hiltunen T. Construction and characterization of synthetic bacterial community for experimental ecology and evolution. Front Genet. 2018;9:312.

    Article 

    Google Scholar 

  • Pascual-García A, Bell T. Community-level signatures of ecological succession in natural bacterial communities. Nat Commun. 2020;11:2386.

    Article 

    Google Scholar 

  • Rivett DW, Bell T. Abundance determines the functional role of bacterial phylotypes in complex communities. Nat Microbiol. 2018;3:767–72.

    Article 
    CAS 

    Google Scholar 

  • Cairns J, Moerman F, Fronhofer EA, Altermatt F, Hiltunen T. Evolution in interacting species alters predator life-history traits, behaviour and morphology in experimental microbial communities. Proc Biol Sci. 2020;287:20200652.

    Google Scholar 

  • Cooke DP, Wedge DC, Lunter G. A unified haplotype-based method for accurate and comprehensive variant calling. Nat Biotechnol. 2021;39:885–92.

    Article 
    CAS 

    Google Scholar 

  • Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012;6:80–92.

    Article 
    CAS 

    Google Scholar 

  • Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.

    Article 
    CAS 

    Google Scholar 

  • Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol Biol Evol. 2017;34:2115–22.

    Article 
    CAS 

    Google Scholar 

  • Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:D309–14.

    Article 
    CAS 

    Google Scholar 

  • Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 2019;47:W81–7.

    Article 
    CAS 

    Google Scholar 

  • Good BH, McDonald MJ, Barrick JE, Lenski RE, Desai MM. The dynamics of molecular evolution over 60,000 generations. Nature. 2017;551:45–50.

    Article 

    Google Scholar 

  • Timonen J, Mannerström H, Vehtari A, Lähdesmäki H. lgpr: an interpretable nonparametric method for inferring covariate effects from longitudinal data. Bioinformatics. 2021;37:1860–7.

    Article 
    CAS 

    Google Scholar 

  • Willis AD, Martin BD. Estimating diversity in networked ecological communities. Biostatistics. 2022;23:207–22.

    Article 

    Google Scholar 

  • Willis A, Bunge J, Whitman T. Improved detection of changes in species richness in high diversity microbial communities. J R Stat Soc C. 2017;66:963–77.

    Article 

    Google Scholar 

  • Anderson MJ. A new method for non‐parametric multivariate analysis of variance. Austral Ecol. 2001:26;32–46.

  • Anderson MJ. Distance-based tests for homogeneity of multivariate dispersions. Biometrics. 2006;62:245–53.

    Article 

    Google Scholar 

  • Martin BD, Witten D, Willis AD. Modeling microbial abundances and dysbiosis with beta-binomial regression. Ann Appl Stat. 2020;14:94–115.

    Article 

    Google Scholar 

  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    Article 

    Google Scholar 

  • Zhang Y, Thompson KN, Huttenhower C, Franzosa EA. Statistical approaches for differential expression analysis in metatranscriptomics. Bioinformatics. 2021;37:i34–41.

    Article 
    CAS 

    Google Scholar 

  • Abdi H, Williams LJ, Valentin D, Bennani-Dosse M. STATIS and DISTATIS: optimum multitable principal component analysis and three way metric multidimensional scaling. WIREs Comp Stat. 2012;4:124–67.

  • Charrad M, Ghazzali N, Boiteau V, Niknafs A. NbClust: an R package for determining the relevant number of clusters in a data set. J Stat Softw. 2014;61:1–36.

    Article 

    Google Scholar 

  • Zhu A, Ibrahim JG, Love MI. Heavy-tailed prior distributions for sequence count data: removing the noise and preserving large differences. Bioinformatics. 2019;35:2084–92.

    Article 
    CAS 

    Google Scholar 

  • Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–7.

    Article 
    CAS 

    Google Scholar 

  • Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27–30.

    Article 
    CAS 

    Google Scholar 

  • Wichman HA, Badgett MR, Scott LA, Boulianne CM, Bull JJ. Different trajectories of parallel evolution during viral adaptation. Science. 1999;285:422–4.

    Article 
    CAS 

    Google Scholar 

  • Lieberman TD, Michel J-B, Aingaran M, Potter-Bynoe G, Roux D, Davis MR Jr, et al. Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes. Nat Genet. 2011;43:1275–80.

    Article 
    CAS 

    Google Scholar 

  • Lebeuf-Taylor E, McCloskey N, Bailey SF, Hinz A, Kassen R. The distribution of fitness effects among synonymous mutations in a gene under directional selection. Elife. 2019;8:e45952.

    Article 

    Google Scholar 

  • Bailey SF, Hinz A, Kassen R. Adaptive synonymous mutations in an experimentally evolved Pseudomonas fluorescens population. Nat Commun. 2014;5:4076.

    Article 
    CAS 

    Google Scholar 

  • Mukherjee S, Jemielita M, Stergioula V, Tikhonov M, Bassler BL. Photosensing and quorum sensing are integrated to control Pseudomonas aeruginosa collective behaviors. PLoS Biol. 2019;17:e3000579.

    Article 
    CAS 

    Google Scholar 

  • Segura A, Hurtado A, Duque E, Ramos JL. Transcriptional phase variation at the flhB gene of Pseudomonas putida DOT-T1E is involved in response to environmental changes and suggests the participation of the flagellar export system in solvent tolerance. J Bacteriol. 2004;186:1905–9.

    Article 
    CAS 

    Google Scholar 

  • Lee X, Reimmann C, Greub G, Sufrin J, Croxatto A. The Pseudomonas aeruginosa toxin L-2-amino-4-methoxy-trans-3-butenoic acid inhibits growth and induces encystment in Acanthamoeba castellanii. Microbes Infect. 2012;14:268–72.

    Article 
    CAS 

    Google Scholar 

  • Montagnes DJS, Barbosa AB, Boenigk J, Davidson K, Jürgens K, Macek M, et al. Selective feeding behaviour of key free-living protists: avenues for continued study. Aquat Micro Ecol. 2008;53:83–98.

    Article 

    Google Scholar 

  • Collins K, editor. Tetrahymena thermophila. New York: Academic Press, Elsevier; 2012.

  • Ruehle MD, Orias E, Pearson CG. Tetrahymena as a unicellular model eukaryote: genetic and genomic tools. Genetics. 2016;203:649–65.

    Article 
    CAS 

    Google Scholar 

  • Plum K, Tarkington J, Zufall RA. Experimental evolution in Tetrahymena. Microorganisms. 2022;10:1–11.

  • Heard E, Martienssen RA. Transgenerational epigenetic inheritance: myths and mechanisms. Cell. 2014;157:95–109.

    Article 
    CAS 

    Google Scholar 

  • Jones ML, Rivett DW, Pascual-García A, Bell T. Relationships between community composition, productivity and invasion resistance in semi-natural bacterial microcosms. Elife. 2021;10:1–25.

  • Kertesz MA. Riding the sulfur cycle-metabolism of sulfonates and sulfate esters in gram-negative bacteria. FEMS Microbiol Rev. 2000;24:135–75.

    CAS 

    Google Scholar 

  • Park C, Shin B, Park W. Protective role of bacterial alkanesulfonate monooxygenase under oxidative stress. Appl Environ Microbiol. 2020;86:1–14.

  • Shatalin K, Shatalina E, Mironov A, Nudler E. H2S: a universal defense against antibiotics in bacteria. Science. 2011;334:986–90.

    Article 
    CAS 

    Google Scholar 

  • Ong C-LY, Beatson SA, Totsika M, Forestier C, McEwan AG, Schembri MA. Molecular analysis of type 3 fimbrial genes from Escherichia coli, Klebsiella and Citrobacter species. BMC Microbiol. 2010;10:183.

    Article 

    Google Scholar 

  • McNally L, Brown SP. Building the microbiome in health and disease: niche construction and social conflict in bacteria. Philos Trans R Soc Lond B Biol Sci. 2015;370:1–8.

  • Scheuerl T, Cairns J, Becks L, Hiltunen T. Predator coevolution and prey trait variability determine species coexistence. Proc Biol Sci. 2019;286:20190245.

    Google Scholar 

  • Koskella B, Brockhurst MA. Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol Rev. 2014;38:916–31.

    Article 
    CAS 

    Google Scholar 

  • Wilhelm Scherer H. Sulfur in soils. J Plant Nutr Soil Sci. 2009;172:326–35.

    Article 

    Google Scholar 

  • Kaya K. Chemistry and biochemistry of taurolipids. Prog Lipid Res. 1992;31:87–108.

    Article 
    CAS 

    Google Scholar 

  • Fukami T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu Rev Ecol Evol Syst. 2015;46:1–23.

    Article 

    Google Scholar 

  • Debray R, Herbert RA, Jaffe AL, Crits-Christoph A, Power ME, Koskella B. Priority effects in microbiome assembly. Nat Rev Microbiol. 2022;20:109–21.

    Article 
    CAS 

    Google Scholar 

  • Price TD, Qvarnström A, Irwin DE. The role of phenotypic plasticity in driving genetic evolution. Proc Biol Sci. 2003;270:1433–40.

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Preparing to be prepared

    Synapsid tracks with skin impressions illuminate the terrestrial tetrapod diversity in the earliest Permian of equatorial Pangea