in

Long-term spatiotemporal patterns in the number of colonies and honey production in Mexico

  • Hung, K.-L.J., Kingston, J. M., Albrecht, M., Holway, D. A. & Kohn, J. R. The worldwide importance of honey bees as pollinators in natural habitats. Proc. R. Soc. B 285, 20172140 (2018).

    Article 

    Google Scholar 

  • Klein, A.-M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 274, 303–313 (2007).

    Article 

    Google Scholar 

  • Mashilingi, S. K., Zhang, H., Garibaldi, L. A. & An, J. Honeybees are far too insufficient to supply optimum pollination services in agricultural systems worldwide. Agr. Ecosyst. Environ. 335, 108003 (2022).

    Article 

    Google Scholar 

  • Stein, K. et al. Bee pollination increases yield quantity and quality of cash crops in Burkina Faso West Africa. Sci. Rep. 7, 17691 (2017).

    Article 
    ADS 

    Google Scholar 

  • Neumann, P. & Carreck, N. L. Honey bee colony losses. J. Apic. Res. 49, 1–6 (2010).

    Article 

    Google Scholar 

  • Pettis, J. S. & Delaplane, K. S. Coordinated responses to honey bee decline in the USA. Apidologie 41, 256–263 (2010).

    Article 

    Google Scholar 

  • Potts, S. G. et al. Declines of managed honey bees and beekeepers in Europe. J. Apic. Res. 49, 15–22 (2010).

    Article 

    Google Scholar 

  • Moritz, R. F. A. & Erler, S. Lost colonies found in a data mine: Global honey trade but not pests or pesticides as a major cause of regional honeybee colony declines. Agr. Ecosyst. Environ. 216, 44–50 (2016).

    Article 

    Google Scholar 

  • Osterman, J. et al. Global trends in the number and diversity of managed pollinator species. Agr. Ecosyst. Environ. 322, 107653 (2021).

    Article 

    Google Scholar 

  • Requier, F. et al. Trends in beekeeping and honey bee colony losses in Latin America. J. Apic. Res. 57, 657–662 (2018).

    Article 

    Google Scholar 

  • Vandame, R. & Palacio, M. A. Preserved honey bee health in Latin America: a fragile equilibrium due to low-intensity agriculture and beekeeping?. Apidologie 41, 243–255 (2010).

    Article 

    Google Scholar 

  • Antúnez, K., Invernizzi, C., Mendoza, Y., vanEngelsdorp, D. & Zunino, P. Honeybee colony losses in Uruguay during 2013–2014. Apidologie 48, 364–370 (2017).

    Article 

    Google Scholar 

  • Castilhos, D., Bergamo, G. C. & Kastelic, J. P. Honey bee colony losses in Brazil in 2018–2019 / Perdas de colônias de abelhas no Brasil em 2018–2019. Braz. J. Anim. Environ. Res. 4, 5017–5041 (2021).

    Google Scholar 

  • Castilhos, D., Bergamo, G. C., Gramacho, K. P. & Gonçalves, L. S. Bee colony losses in Brazil: a 5-year online survey. Apidologie 50, 263–272 (2019).

    Article 

    Google Scholar 

  • Maggi, M. et al. Honeybee health in South America. Apidologie 47, 835–854 (2016).

    Article 

    Google Scholar 

  • SIAP. Sistema de Información Agroalimentaria de Consulta. http://www.agricultura.gob.mx/datos-abiertos/siap (2019).

  • Namdar-Irani, M., Sotomayor, O. & Rodrigues, M. Tendencias estructurales en la agricultura de América Latina: desafíos para las políticas públicas. 45 (2020).

  • Torres-Ruiz, A., Jones, R. W. & Barajas, R. A. Present and Potential use of Bees as Managed Pollinators in Mexico1. Southwestern entomologist (2013).

  • Brodschneider, R. et al. Multi-country loss rates of honey bee colonies during winter 2016/2017 from the COLOSS survey. J. Apic. Res. 57, 452–457 (2018).

    Article 

    Google Scholar 

  • Gray, A. et al. Loss rates of honey bee colonies during winter 2017/18 in 36 countries participating in the COLOSS survey, including effects of forage sources. J. Apic. Res. 58, 479–485 (2019).

    Article 

    Google Scholar 

  • Medina-Flores, C. A. et al. Pérdida de colonias de abejas melíferas y factores asociados en el centro-occidente de México en los inviernos del 2016 al 2019. Revista Bio Ciencias 8, 11 (2021).

    Article 

    Google Scholar 

  • vanEngelsdorp, D. & Meixner, M. D. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J. Invert. Pathol. 103(Supplement), S80–S95 (2010).

  • Hristov, P., Shumkova, R., Palova, N. & Neov, B. Honey bee colony losses: Why are honey bees disappearing?. Sociobiology 68, e5851–e5851 (2021).

    Article 

    Google Scholar 

  • Shanahan, M. Honey bees and industrial agriculture: What researchers are missing, and why it’s a problem. J. Insect Sci. 22, 14 (2022).

    Article 

    Google Scholar 

  • Nearman, A. & vanEngelsdorp, D. Water provisioning increases caged worker bee lifespan and caged worker bees are living half as long as observed 50 years ago. Sci. Rep. 12, 18660. https://doi.org/10.1038/s41598-022-21401-2 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ellis, J. D., Evans, J. D. & Pettis, J. Colony losses, managed colony population decline, and Colony Collapse Disorder in the United States. J. Apic. Res. 49, 134–136 (2010).

    Article 

    Google Scholar 

  • Guzmán-Novoa, E., Benítez, A. C., Montaño, L. G. E. & Novoa, G. G. Colonization, impact and control of Africanized honey bees in Mexico. Veterinaria México OA 42, (2011).

  • Becerra-Guzmán, F., Guzmán-Novoa, E., Correa-Benítez, A. & Zozaya-Rubio, A. Length of life, age at first foraging and foraging life of Africanized and European honey bee (Apis mellifera) workers, during conditions of resource abundance. J. Apic. Res. 44, 151–156 (2005).

    Article 

    Google Scholar 

  • Guzman-Novoa, E. & Uribe-Rubio, J. L. Honey production by European, Africanized and hybrid honey bee (Apis mellifera) colonies in Mexico. American bee journal (2004).

  • Guzman-Novoa, E. et al. The Process and Outcome of the Africanization of Honey Bees in Mexico: Lessons and Future Directions. Front. Ecol. Evol. 8, (2020).

  • Goulson, D., Nicholls, E., Botías, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347, 1255957 (2015).

    Article 

    Google Scholar 

  • Otto, C. R. V., Roth, C. L., Carlson, B. L. & Smart, M. D. Land-use change reduces habitat suitability for supporting managed honey bee colonies in the Northern Great Plains. PNAS 113, 10430–10435 (2016).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Outhwaite, C. L., McCann, P. & Newbold, T. Agriculture and climate change are reshaping insect biodiversity worldwide. Nature 605, 97–102 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A.-L. & Totland, Ø. How does climate warming affect plant-pollinator interactions?. Ecol. Lett. 12, 184–195 (2018).

    Article 

    Google Scholar 

  • Cooper, P. D., Schaffer, W. M. & Buchmann, S. L. Temperature Regulation of Honey Bees (Apis Mellifera) Foraging in the Sonoran Desert. J. Exp. Biol. 114, 1–15 (1985).

    Article 

    Google Scholar 

  • Stalidzans, E. et al. Dynamics of weight change and temperature of Apis mellifera (Hymenoptera: Apidae) Colonies in a wintering building with controlled temperature. J. Econ. Entomol. 110, 13–23 (2017).

    CAS 

    Google Scholar 

  • Qu, M., Wan, J. & Hao, X. Analysis of diurnal air temperature range change in the continental United States. Weather Clim. Extremes 4, 86–95 (2014).

    Article 

    Google Scholar 

  • Braganza, K., Karoly, D. J. & Arblaster, J. M. Diurnal temperature range as an index of global climate change during the twentieth century. Geophys. Res. Lett. 31, (2004).

  • Halsch, C. A. et al. Insects and recent climate change. Proc. Natl. Acad. Sci. 118, e2002543117 (2021).

    Article 
    CAS 

    Google Scholar 

  • Abou-Shaara, H. F. The foraging behaviour of honey bees, Apis mellifera: A review. Vet. Med. 59, 1–10 (2014).

    Article 

    Google Scholar 

  • Joshi, N. & Joshi, P. Foraging Behaviour of Apis Spp. on Apple Flowers in a Subtropical Environment. New York Sci. J. 3, (2010).

  • Gounari, S., Proutsos, N. & Goras, G. How does weather impact on beehive productivity in a Mediterranean island? Ital. J. Agrometeorol. 65–81. https://doi.org/10.36253/ijam-1195 (2022).

  • Delgado, D. L., Pérez, M. E., Galindo-Cardona, A., Giray, T. & Restrepo, C. Forecasting the Influence of Climate Change on Agroecosystem Services: Potential Impacts on Honey Yields in a Small-Island Developing State. Psyche J. Entomol. https://www.hindawi.com/journals/psyche/2012/951215/. https://doi.org/10.1155/2012/951215 (2012).

  • Alves, L. H. S., Cassino, P. C. R. & Prezoto, F. Effects of abiotic factors on the foraging activity of Apis mellifera Linnaeus, 1758 in inflorescences of Vernonia polyanthes Less (Asteraceae). Acta Sci. Anim. Sci. 37, 405–409 (2015).

  • Abou-Shaara, H. Expectations about the potential impacts of climate change on Honey Bee Colonies in Egypt. J. Apicult. 31, 157–164 (2016).

    Article 

    Google Scholar 

  • Donkersley, P., Rhodes, G., Pickup, R. W., Jones, K. C. & Wilson, K. Honeybee nutrition is linked to landscape composition. Ecol. Evol. 4, 4195–4206 (2014).

    Article 

    Google Scholar 

  • Michel-Cuello, C. & Aguilar-Rivera, N. Climate change effects on agricultural production systems in México. in Handbook of Climate Change Across the Food Supply Chain (eds. Leal Filho, W., Djekic, I., Smetana, S. & Kovaleva, M.) 335–353 (Springer International Publishing, 2022). https://doi.org/10.1007/978-3-030-87934-1_19.

  • LaFevor, M. C. Spatial and temporal changes in crop species production diversity in Mexico (1980–2020). Agriculture 12, 985 (2022).

    Article 

    Google Scholar 

  • Smart, M. D., Otto, C. R. V. & Lundgren, J. G. Nutritional status of honey bee (Apis mellifera L.) workers across an agricultural land-use gradient. Sci. Rep. 9, 1–10 (2019).

  • Alaux, C., Ducloz, F., Crauser, D. & Conte, Y. L. Diet effects on honeybee immunocompetence. Biol. Lett. rsbl20090986. https://doi.org/10.1098/rsbl.2009.0986 (2010).

  • Dolezal, A. G., Carrillo-Tripp, J., Miller, W. A., Bonning, B. C. & Toth, A. L. Intensively Cultivated Landscape and Varroa Mite Infestation Are Associated with Reduced Honey Bee Nutritional State. PLoS One 11, (2016).

  • Pasquale, G. D. et al. Variations in the Availability of Pollen Resources Affect Honey Bee Health. PLoS ONE 11, e0162818 (2016).

    Article 

    Google Scholar 

  • Kaluza, B. F. et al. Social bees are fitter in more biodiverse environments. Sci Rep 8, 1–10 (2018).

    Article 
    CAS 

    Google Scholar 

  • Ricigliano, V. A. et al. Honey bee colony performance and health are enhanced by apiary proximity to US Conservation Reserve Program (CRP) lands. Sci. Rep. 9, 4894 (2019).

    Article 
    ADS 

    Google Scholar 

  • Clermont, A., Eickermann, M., Kraus, F., Hoffmann, L. & Beyer, M. Correlations between land covers and honey bee colony losses in a country with industrialized and rural regions. Sci. Total Environ. 532, 1–13 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Kuchling, S. et al. Investigating the role of landscape composition on honey bee colony winter mortality: A long-term analysis. Sci. Rep. 8, 1 (2018).

    Article 
    CAS 

    Google Scholar 

  • Dixon, D. J., Zheng, H. & Otto, C. R. V. Land conversion and pesticide use degrade forage areas for honey bees in America’s beekeeping epicenter. PLoS ONE 16, e0251043 (2021).

    Article 
    CAS 

    Google Scholar 

  • Mendoza-Ponce, A., Corona-Núñez, R. O., Galicia, L. & Kraxner, F. Identifying hotspots of land use cover change under socioeconomic and climate change scenarios in Mexico. Ambio 48, 336–349 (2019).

    Article 

    Google Scholar 

  • Magaña, M. et al. Productividad de la apicultura en México y su impacto sobre la rentabilidad. Revista mexicana de ciencias agrícolas 7, 1103–1115 (2016).

    Article 

    Google Scholar 

  • Mitchell, E. a. D. et al. A worldwide survey of neonicotinoids in honey. Science 358, 109–111 (2017).

  • Pacheco, A. P. Identificación de residuos tóxicos en miel de diferentes procedencias en la zona centro del Estado de Veracruz / Identification of toxic residues in honey from different sources in the central zone of the State of Veracruz. CIBA Revista Iberoamericana de las Ciencias Biológicas y Agropecuarias 1, 1–42 (2014).

    Article 

    Google Scholar 

  • Ruiz-Toledo, J. et al. Organochlorine Pesticides in Honey and Pollen Samples from Managed Colonies of the Honey Bee Apis mellifera Linnaeus and the Stingless Bee Scaptotrigona mexicana Guérin from Southern Mexico. Insects 9, 54 (2018).

    Article 

    Google Scholar 

  • Valdovinos-Flores, C., Alcantar-Rosales, V. M., Gaspar-Ramírez, O., Saldaña-Loza, L. M. & Dorantes-Ugalde, J. A. Agricultural pesticide residues in honey and wax combs from Southeastern, Central and Northeastern Mexico. J. Apic. Res. 56, 667–679 (2017).

    Article 

    Google Scholar 

  • Gómez-Escobar, E. et al. Effect of GF-120 (Spinosad) aerial sprays on colonies of the stingless Bee Scaptotrigona mexicana (Hymenoptera: Apidae) and the Honey Bee (Hymenoptera: Apidae). J. Econ. Entomol. 111, 1711–1715 (2018).

    Article 

    Google Scholar 

  • Sánchez, D., Solórzano, E. D. J., Liedo, P. & Vandame, R. Effect of the natural pesticide Spinosad (GF-120 Formulation) on the Foraging behavior of Plebeia moureana (Hymenoptera: Apidae). J. Econ. Entomol. 105, 1234–1237 (2012).

    Article 

    Google Scholar 

  • Cabrera-Marín, N. V., Liedo, P. & Sánchez, D. The Effect of Application Rate of GF-120 (Spinosad) and Malathion on the Mortality of Apis mellifera (Hymenoptera: Apidae) Foragers. J. Econ. Entomol. 109, 515–519 (2016).

    Article 

    Google Scholar 

  • Valdovinos-Núñez, G. R. et al. Comparative toxicity of pesticides to stingless bees (Hymenoptera: Apidae: Meliponini). J. Econ. Entomol. 102, 1737–1742 (2009).

    Article 

    Google Scholar 

  • ANADA. Atlas Nacional de las Abejas y Derivados Apícolas. https://atlas-abejas.agricultura.gob.mx/cap2.html#212_Enfermedades_y_Plagas_de_las_Colmenas (2021).

  • Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).

    Article 

    Google Scholar 

  • Daberkow, S., Korb, P. & Hoff, F. Structure of the U.S. beekeeping industry: 1982–2002. J. Econ. Entomol. 102, 868–886 (2009).

  • Saunders, S. P. et al. Unraveling a century of global change impacts on winter bird distributions in the eastern United States. Glob. Change Biol. 28, 2221–2235 (2022).

    Article 
    CAS 

    Google Scholar 

  • CICESE. Base de datos climatológica nacional (Sistema CLICOM). http://clicom-mex.cicese.mx/ (2018).

  • CONEVAL. Metodología para la medición de pobreza en México | CONEVAL. https://www.coneval.org.mx/Medicion/MP/Paginas/Metodologia.aspx.

  • Wood, S. N. Generalized Additive Models: An Introduction with R, Second Edition. (CRC Press, 2017).

  • Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R. (Springer-Verlag, 2009).

  • Team, R. C. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (2016).

  • Lichstein, J. W., Simons, T. R., Shriner, S. A. & Franzreb, K. E. Spatial autocorrelation and autoregressive models in ecology. Ecol. Monogr. 72, 445–463 (2002).

    Article 

    Google Scholar 

  • Döke, M. A., Frazier, M. & Grozinger, C. M. Overwintering honey bees: biology and management. Curr. Opin. Insect Sci. 10, 185–193 (2015).

    Article 

    Google Scholar 

  • Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P. & Makowski, D. Performance: An R package for assessment, comparison and testing of statistical models. J. Open Sour. Softw. 6, 3139 (2021).

    Article 
    ADS 

    Google Scholar 

  • Simpson, G. L. Modelling palaeoecological time series using generalised additive models. Front. Ecol. Evol. 6, 1 (2018).

    Article 

    Google Scholar 

  • Furrer, R., Nychka, D., Sain, S. & Nychka, M. D. Title Tools for spatial data. (2012).


  • Source: Ecology - nature.com

    Half a century of rising extinction risk of coral reef sharks and rays

    Preparing to be prepared