in

Metamorphic aerial robot capable of mid-air shape morphing for rapid perching

  • Akçakaya, H. R. et al. Quantifying species recovery and conservation success to develop an IUCN Green List of Species. Conserv. Biol. 32, 1128–1138. https://doi.org/10.1111/cobi.13112 (2018).

    Article 

    Google Scholar 

  • IUCN. The IUCN Red List of Threatened Species. Version 2021-3 (2022).

  • Zellweger, F., De Frenne, P., Lenoir, J., Rocchini, D. & Coomes, D. Advances in microclimate ecology arising from remote sensing. Trends Ecol. Evol. 34, 327–341. https://doi.org/10.1016/j.tree.2018.12.012 (2019).

    Article 

    Google Scholar 

  • Mohan, M. et al. Individual tree detection from unmanned aerial vehicle (UAV) derived canopy height model in an open canopy mixed conifer forest. Forestshttps://doi.org/10.3390/f8090340 (2017).

    Article 

    Google Scholar 

  • Dronova, I., Kislik, C., Dinh, Z. & Kelly, M. A review of unoccupied aerial vehicle use in wetland applications: Emerging opportunities in approach, technology, and data. Droneshttps://doi.org/10.3390/drones5020045 (2021).

    Article 

    Google Scholar 

  • Farinha, A. & Lima, P. U. A novel underactuated hand suitable for human-oriented domestic environments. In: Proceedings – 2016 International Conference on Autonomous Robot Systems and Competitions, ICARSC 2016 106–111, https://doi.org/10.1109/ICARSC.2016.21 (2016).

  • Hamaza, S., Georgilas, I., Heredia, G., Ollero, A. & Richardson, T. Design, modeling, and control of an aerial manipulator for placement and retrieval of sensors in the environment. J. Field Robotics 37, 1224–1245. https://doi.org/10.1002/rob.21963 (2020).

    Article 

    Google Scholar 

  • Nakamura, A. et al. Forests and their canopies: Achievements and horizons in canopy science. Trends Ecol. Evol. 32, 438–451. https://doi.org/10.1016/j.tree.2017.02.020 (2017).

    Article 

    Google Scholar 

  • Hang, K. et al. Perching and resting – A paradigm for UAV maneuvering with modularized landing gears. Sci. Roboticshttps://doi.org/10.1126/scirobotics.aau6637 (2019).

    Article 

    Google Scholar 

  • Danko, T. W., Kellas, A. & Oh, P. Y. Robotic rotorcraft and perch-and-stare: Sensing landing zones and handling obscurants. In ICAR ’05. Proceedings., 12th International Conference on Advanced Robotics, 2005 296–302, https://doi.org/10.1109/ICAR.2005.1507427 (2005).

  • Pauli, J. N., Zachariah Peery, M., Fountain, E. D. & Karasov, W. H. Arboreal folivores limit their energetic output, all the way to slothfulness. Am. Nat. 188, 196–204, https://doi.org/10.1086/687032 (2016).

  • Olson, R. A., Glenn, Z. D., Cliffe, R. N. & Butcher, M. T. Architectural properties of sloth forelimb muscles (Pilosa: Bradypodidae). J. Mamm. Evol. 25, 573–588. https://doi.org/10.1007/s10914-017-9411-z (2018).

    Article 

    Google Scholar 

  • Kovač, M., Germann, J., Hürzeler, C., Siegwart, R. Y. & Floreano, D. A perching mechanism for micro aerial vehicles. J. Micro-Nano Mechatron. 5, 77–91. https://doi.org/10.1007/s12213-010-0026-1 (2009).

    Article 

    Google Scholar 

  • Toon, J. ’SlothBot in the Garden’ Demonstrates Hyper-Efficient Conservation Robot.

  • Thomas, J. et al. Aggressive flight with quadrotors for perching on inclined surfaces. J. Mech. Robot. 8, 51007. https://doi.org/10.1115/1.4032250 (2016).

    Article 

    Google Scholar 

  • Daler, L., Klaptocz, A., Briod, A., Sitti, M. & Floreano, D. A perching mechanism for flying robots using a fibre-based adhesive. In 2013 IEEE International Conference on Robotics and Automation, 4433–4438 (IEEE, 2013).

  • Kovač, M., Germann, J., Hürzeler, C., Siegwart, R. Y. & Floreano, D. A perching mechanism for micro aerial vehicles. J. Micro-Nano Mechatron. 5, 77–91 (2009).

    Article 

    Google Scholar 

  • Pope, M. T. et al. A multimodal robot for perching and climbing on vertical outdoor surfaces. IEEE Trans. Rob. 33, 38–48. https://doi.org/10.1109/TRO.2016.2623346 (2017).

    Article 

    Google Scholar 

  • Lussier Desbiens, A., Asbeck, A. T. & Cutkosky, M. R. Landing, perching and taking off from vertical surfaces. Int. J. Robotics Res. 30, 355–370 (2011).

    Article 

    Google Scholar 

  • Nguyen, H.-N., Siddall, R., Stephens, B., Navarro-Rubio, A. & Kovač, M. A Passively adaptive microspine grapple for robust, controllable perching. In 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft), 80–87 (IEEE, 2019).

  • Braithwaite, A., Al Hinai, T., Haas-Heger, M., McFarlane, E. & Kovač, M. Tensile web construction and perching with nano aerial vehicles. In Robotics Research (eds Bicchi, A. & Burgard, W.) (Springer, Cham, 2018).

    Google Scholar 

  • Zhang, K., Chermprayong, P., Alhinai, T. M., Siddall, R. & Kovac, M. SpiderMAV: Perching and stabilizing micro aerial vehicles with bio-inspired tensile anchoring systems. In International Conference on Intelligent Robots and Systems (2017).

  • Roderick, W. R. T., Jiang, H., Wang, S., Lentink, D. & Cutkosky, M. R. Bioinspired grippers for natural curved surface perching. In Conference on Biomimetic and Biohybrid Systems, 604–610 (Springer, 2017).

  • Thomas, J., Loianno, G., Daniilidis, K. & Kumar, V. Visual servoing of quadrotors for perching by hanging from cylindrical objects. IEEE Robotics Automation Lett.https://doi.org/10.1109/LRA.2015.2506001 (2016).

    Article 

    Google Scholar 

  • McLaren, A., Fitzgerald, Z., Gao, G. & Liarokapis, M. A passive closing, tendon driven, adaptive robot hand for ultra-fast, aerial grasping and perching. In IEEE International Conference on Intelligent Robots and Systems 5602–5607, https://doi.org/10.1109/IROS40897.2019.8968076 (2019).

  • Zhang, Z., Xie, P. & Ma, O. Bio-inspired trajectory generation for UAV perching. In 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 997–1002 (IEEE, 2013).

  • Doyle, C. E. et al. An avian-inspired passive mechanism for quadrotor perching. IEEE/ASME Trans. Mechatron. 18, 506–517. https://doi.org/10.1109/TMECH.2012.2211081 (2013).

    Article 

    Google Scholar 

  • Erbil, M. A., Prior, S. D. & Keane, A. J. Design optimisation of a reconfigurable perching element for vertical take-off and landing unmanned aerial vehicles. Int. J. Micro Air Veh. 5, 207–228 (2013).

    Article 

    Google Scholar 

  • Chi, W., Low, K. H., Hoon, K. H. & Tang, J. An optimized perching mechanism for autonomous perching with a quadrotor. In IEEE International Conference on Robotics and Automation, 3109–3115, (2014). https://doi.org/10.1109/ICRA.2014.6907306

  • Roderick, W. R. T., Cutkosky, M. R. & Lentink, D. Bird-inspired dynamic grasping and perching in arboreal environments. Sci. Roboticshttps://doi.org/10.1126/scirobotics.abj7562 (2021).

    Article 

    Google Scholar 

  • Garcia-Rubiales, F. J., Ramon-Soria, P., Arrue, B. C., Ollero, A. Magnetic & detaching system for Modular UAVs with perching capabilities in industrial environments.,. International Workshop on Research. Education and Development on Unmanned Aerial Systems, RED-UAS2019(172–176), 2019. https://doi.org/10.1109/REDUAS47371.2019.8999704 (2019).

  • Bai, L. et al. Design and experiment of a deformable bird-inspired UAV perching mechanism. J. Bionic Eng. 18, 1304–1316. https://doi.org/10.1007/s42235-021-00098-5 (2021).

    Article 

    Google Scholar 

  • Joachimczak, M., Suzuki, R. & Arita, T. Artificial metamorphosis: Evolutionary design of transforming, soft-bodied robots. Artif. Life 22(271–298), 2016. https://doi.org/10.1162/artl_a_00207 (2016).

    Article 

    Google Scholar 

  • Sims, K. Evolving Virtual Creatures. In Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’94, 15-22, https://doi.org/10.1145/192161.192167 (Association for Computing Machinery, 1994).

  • Bongard, J. Morphological change in machines accelerates the evolution of robust behavior. Proc. Natl. Acad. Sci. 108, 1234–1239. https://doi.org/10.1073/pnas.1015390108 (2011).

    Article 
    ADS 

    Google Scholar 

  • Truman, J. W. & Riddiford, L. M. The origins of insect metamorphosis. Nature 401, 447–452. https://doi.org/10.1038/46737 (1999).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Campbell, N. A. et al. Biology: A Global Approach (Pearson New Your, NY, 2018).

    Google Scholar 

  • Dai, J. S. & Rees Jones, J. Mobility in metamorphic mechanisms of foldable/erectable kinds. J. Mech. Des. 121, 375. https://doi.org/10.1115/1.2829470 (1999).

    Article 

    Google Scholar 

  • Mintchev, S. & Floreano, D. Adaptive morphology: A design principle for multimodal and multifunctional robots. IEEE Robot. Autom. Mag. 23, 42–54 (2016).

    Article 

    Google Scholar 

  • Shah, D. et al. Shape changing robots: Bioinspiration, simulation, and physical realization. Adv. Mater. 33, 2002882 (2021).

    Article 
    CAS 

    Google Scholar 

  • Sareh, S., Siddall, R., Alhinai, T. & Kovac, M. Bio-inspired soft aerial robots: Adaptive morphology for high-performance flight. In Soft Robotics: Trends, Applications and Challenges, 65–74 (Springer, 2017).

  • Derrouaoui, S. H., Bouzid, Y., Guiatni, M. & Dib, I. A comprehensive review on reconfigurable drones: classification characteristics design and control technologies. Unmanned Syst. 10(01), 3–29. https://doi.org/10.1142/S2301385022300013 (2022).

  • Floreano, D. & Wood, R. J. Science, technology and the future of small autonomous drones. Nature 521, 460–466 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Hwang, D., Barron, E. J., Haque, A. B. & Bartlett, M. D. Shape morphing mechanical metamaterials through reversible plasticity. Sci. Robotics 7, eabg2171. https://doi.org/10.1126/scirobotics.abg2171 (2022).

    Article 

    Google Scholar 

  • Siddall, R., Ortega Ancel, A. & Kovač, M. Wind and water tunnel testing of a morphing aquatic micro air vehicle. Interface focus 7, 20160085. https://doi.org/10.1098/rsfs.2016.0085 (2017).

    Article 

    Google Scholar 

  • Chen, Y. et al. A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot. Sci. Roboticshttps://doi.org/10.1126/scirobotics.aao5619 (2017).

    Article 

    Google Scholar 

  • Daler, L., Mintchev, S., Stefanini, C. & Floreano, D. A bioinspired multi-modal flying and walking robot. Bioinspiration Biomim.https://doi.org/10.1088/1748-3190/10/1/016005 (2015).

    Article 

    Google Scholar 

  • Kovač, M., Wassim-Hraiz, Fauria, O., Zufferey, J. C. & Floreano, D. The EPFL jumpglider: A hybrid jumping and gliding robot with rigid or folding wings. In 2011 IEEE International Conference on Robotics and Biomimetics, ROBIO 2011 1503–1508, https://doi.org/10.1109/ROBIO.2011.6181502 (2011).

  • Riviere, V., Manecy, A. & Viollet, S. Agile robotic fliers: A morphing-based approach. Soft Roboticshttps://doi.org/10.1089/soro.2017.0120 (2018).

    Article 

    Google Scholar 

  • Bucki, N. & Mueller, M. W. Design and control of a passively morphing quadcopter. In IEEE International Conference on Robotics and Automation, vol. 2019-May, 9116–9122, https://doi.org/10.1109/ICRA.2019.8794373 (2019).

  • Mintchev, S., Daler, L., Eplattenier, G. L., Floreano, D. & Member, S. Foldable and self – deployable pocket sized quadrotor. In Proc. of the IEEE Conference on Robotics and Automation 2190–2195 (2015).

  • Mintchev, S., Shintake, J. & Floreano, D. Bioinspired dual-stiffness origami. Sci. Robotics 0275, 1–8. https://doi.org/10.1126/scirobotics.aau0275 (2018).

    Article 

    Google Scholar 

  • Zhao, M., Kawasaki, K., Anzai, T., Chen, X. & Noda, S. Transformable multirotor with two-dimensional multilinks : Modeling, control, and whole-body aerial manipulation. Int. J. Robot. Res.https://doi.org/10.1177/0278364918801639 (2018).

    Article 

    Google Scholar 

  • Bucki, N., Tang, J. & Mueller, M. W. Design and control of a midair-reconfigurable quadcopter using unactuated hinges. IEEE Trans. Rob.https://doi.org/10.1109/TRO.2022.3193792 (2022).

    Article 

    Google Scholar 

  • Shimoyama, I., Miura, H., Suzuki, K. & Ezura, Y. Insect-like microrobots with external skeletons. IEEE Control Syst. Mag. 13, 37–41. https://doi.org/10.1109/37.184791 (1993).

    Article 

    Google Scholar 

  • Noh, M., Kim, S.-W., An, S., Koh, J.-S. & Cho, K.-J. Flea-inspired catapult mechanism for miniature jumping robots. IEEE Trans. Rob. 28, 1007–1018. https://doi.org/10.1109/tro.2012.2198510 (2012).

    Article 
    ADS 

    Google Scholar 

  • Miyashita, S., Guitron, S., Ludersdorfer, M., Sung, C. R. & Rus, D. An untethered miniature origami robot that self-folds, walks, swims, and degrades. In Proceedings – IEEE International Conference on Robotics and Automation 2015-June, 1490–1496, https://doi.org/10.1109/ICRA.2015.7139386 (2015).

  • Morgan, J., Magleby, S. P. & Howell, L. L. An approach to designing origami-adapted aerospace mechanisms. J. Mech. Des.https://doi.org/10.1115/1.4032973 (2016).

    Article 

    Google Scholar 

  • Liang, X. et al. The AmphiHex: A novel amphibious robot with transformable leg-flipper composite propulsion mechanism. In IEEE International Conference on Intelligent Robots and Systems 3667–3672, https://doi.org/10.1109/IROS.2012.6386238 (2012).

  • Polygerinos, P. et al. Soft robotics: Review of fluid-driven intrinsically soft devices; manufacturing, sensing, control, and applications in human-robot interaction. Adv. Eng. Mater.https://doi.org/10.1002/adem.201700016 (2017).

    Article 

    Google Scholar 

  • Coyle, S., Majidi, C., LeDuc, P. & Hsia, K. J. Bio-inspired soft robotics: Material selection, actuation, and design. Extreme Mech. Lett. 22, 51–59. https://doi.org/10.1016/j.eml.2018.05.003 (2018).

    Article 

    Google Scholar 

  • Rus, D. & Tolley, M. T. Design, fabrication and control of soft robots. Nature 521, 467–475. https://doi.org/10.1038/nature14543 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Laschi, C., Mazzolai, B. & Cianchetti, M. Soft robotics: Technologies and systems pushing the boundaries of robot abilities. Sci. Robotics 1, eaah3690. https://doi.org/10.1126/scirobotics.aah3690 (2016).

    Article 

    Google Scholar 

  • Boyraz, P., Runge, G. & Raatz, A. An overview of novel actuators for soft robotics. High Throughput 7, 1–21. https://doi.org/10.3390/act7030048 (2018).

    Article 

    Google Scholar 

  • Miriyev, A., Stack, K. & Lipson, H. Soft material for soft actuators. Nat. Commun. 8, 1–8. https://doi.org/10.1038/s41467-017-00685-3 (2017).

    Article 
    CAS 

    Google Scholar 

  • Nguyen, P. H. & Kovač, M. Adopting physical artificial intelligence in soft aerial robots. IOP Conf. Ser.: Mater. Sci. Eng. 1261, 012006. https://doi.org/10.1088/1757-899X/1261/1/012006 (2022).

    Article 

    Google Scholar 

  • Kim, S.-J., Lee, D.-Y., Jung, G.-P. & Cho, K.-J. An origami-inspired, self-locking robotic arm that can be folded flat. Sci. Robotics 3, eaar2915. https://doi.org/10.1126/scirobotics.aar2915 (2018).

    Article 

    Google Scholar 

  • Ruiz, F., Arrue, B. C. & Ollero, A. SOPHIE: Soft and flexible aerial vehicle for physical interaction with the environment. IEEE Robotics Automation Lett. 7, 11086–11093. https://doi.org/10.1109/LRA.2022.3196768 (2022).

    Article 

    Google Scholar 

  • Doshi, N. et al. Model driven design for flexure-based microrobots. In IEEE International Conference on Intelligent Robots and Systems 2015-Decem, 4119–4126, https://doi.org/10.1109/IROS.2015.7353959 (2015).

  • Koh, J.-S., Doshi, N., Wood, R. J., Temel, F. Z. & McClintock, H. The milliDelta: A high-bandwidth, high-precision, millimeter-scale Delta robot. Sci. Robotics 3, eaar3018. https://doi.org/10.1126/scirobotics.aar3018 (2018).

    Article 

    Google Scholar 

  • Backus, S. B., Sustaita, D., Odhner, L. U. & Dollar, A. M. Mechanical analysis of avian feet: Multiarticular muscles in grasping and perching. R. Soc. Open Sci.https://doi.org/10.1098/rsos.140350 (2015).

    Article 

    Google Scholar 

  • Paine, C. E. T. et al. Functional explanations for variation in bark thickness in tropical rain forest trees. Funct. Ecol. 24, 1202–1210. https://doi.org/10.1111/j.1365-2435.2010.01736.x (2010).

    Article 

    Google Scholar 

  • Miriyev, A. & Kovač, M. Skills for physical artificial intelligence. Nat. Mach. Intell. 2, 658–660. https://doi.org/10.1038/s42256-020-00258-y (2020).

    Article 

    Google Scholar 

  • Felton, S., Tolley, M., Demaine, E., Rus, D. & Wood, R. A method for building self-folding machines. Science 345, 644–646. https://doi.org/10.1126/science.1252610 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Siddall, R., Byrnes, G., Full, R. J. & Jusufi, A. Tails stabilize landing of gliding geckos crashing head-first into tree trunks. Commun. Biol. 4, 1–12. https://doi.org/10.1038/s42003-021-02378-6 (2021).

    Article 
    CAS 

    Google Scholar 

  • Feduccia, A. Evidence from claw geometry indicating arboreal habits of Archaeopteryx. Science 259, 790–793. https://doi.org/10.1126/science.259.5096.790 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Schooling behavior driven complexities in a fear-induced prey–predator system with harvesting under deterministic and stochastic environments

    Multifunctionality of temperate alley-cropping agroforestry outperforms open cropland and grassland