in

Methane emissions offset atmospheric carbon dioxide uptake in coastal macroalgae, mixed vegetation and sediment ecosystems

  • Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO 2. Front. Ecol. Environ. 9, 552–560 (2011).

    Article 

    Google Scholar 

  • Macreadie, P. I. et al. The future of Blue Carbon science. Nat. Commun. 10, 1–13 (2019).

    Google Scholar 

  • Lovelock, C. E. & Duarte, C. M. Dimensions of Blue Carbon and emerging perspectives. Biol. Lett. 15, 20180781 (2019).

    Article 

    Google Scholar 

  • Macreadie, P. I. et al. Blue carbon as a natural climate solution. Nat Rev Earth Environ 2, 826–839 (2021).

  • Al‐Haj, A. N. & Fulweiler, R. W. A synthesis of methane emissions from shallow vegetated coastal ecosystems. Glob. Chang. Biol. 26, 2988–3005 (2020).

    Article 
    ADS 

    Google Scholar 

  • Rosentreter, J. A. et al. Half of global methane emissions come from highly variable aquatic ecosystem sources. Nat. Geosci. https://doi.org/10.1038/s41561-021-00715-2 (2021).

  • Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M. & Enrich-Prast, A. Freshwater methane emissions offset the continental carbon sink. Science (80-) 331, 50–50 (2011).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Rosentreter, J. A., Maher, D. T., Erler, D. V., Murray, R. H. & Eyre, B. D. Methane emissions partially offset “blue carbon” burial in mangroves. Sci. Adv. 4, eaao4985 (2018).

    Article 
    ADS 

    Google Scholar 

  • Rosentreter, J. A., Al‐Haj, A. N., Fulweiler, R. W. & Williamson, P. Methane and nitrous oxide emissions complicate coastal blue carbon assessments. Glob. Biogeochem. Cycles 35, e2020GB006858 (2021).

  • Duarte, C. M., Middelburg, J. J. & Caraco, N. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2, 1–8 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Snelgrove, P. V. R. et al. Global carbon cycling on a heterogeneous seafloor. Trends Ecol. Evol. 33, 96–105 (2018).

    Article 

    Google Scholar 

  • Ortega, A. et al. Important contribution of macroalgae to oceanic carbon sequestration. Nat. Geosci. 12, 748–754 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Barnes, R. O. & Goldberg, E. D. Methane production and consumption in anoxic marine sediments. Geology 4, 297 (1976).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1130/0091-7613(1976)42.0.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1130%2F0091-7613%281976%294%3C297%3AMPACIA%3E2.0.CO%3B2″ aria-label=”Article reference 13″ data-doi=”10.1130/0091-7613(1976)42.0.CO;2″>Article 
    ADS 
    CAS 

    Google Scholar 

  • Reeburgh, W. S. Rates of biogeochemical processes in anoxic sediments. Annu. Rev. Earth Planet. Sci. 11, 269–298 (1983).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Wallenius, A. J., Dalcin Martins, P., Slomp, C. P. & Jetten, M. S. M. Anthropogenic and environmental constraints on the microbial methane cycle in coastal sediments. Front. Microbiol. 12, 631621 (2021).

  • Tokoro, T. et al. Net uptake of atmospheric CO2 by coastal submerged aquatic vegetation. Glob. Chang. Biol. 20, 1873–1884 (2014).

    Article 
    ADS 

    Google Scholar 

  • Gallagher, J. B., Shelamoff, V. & Layton, C. Seaweed ecosystems may not mitigate CO2 emissions. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsac011 (2022).

  • Oremland, R. S. & Taylor, B. F. Sulfate reduction and methanogenesis in marine sediments. Geochim. Cosmochim. Acta 42, 209–214 (1978).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Egger, M., Riedinger, N., Mogollón, J. M. & Jørgensen, B. B. Global diffusive fluxes of methane in marine sediments. Nat. Geosci. 11, 421–425 (2018).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Weber, T., Wiseman, N. A. & Kock, A. Global ocean methane emissions dominated by shallow coastal waters. Nat. Commun. 10, 1–10 (2019).

    Article 

    Google Scholar 

  • Neubauer, S. C. & Megonigal, J. P. Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems 18, 1000–1013 (2015).

    Article 

    Google Scholar 

  • Neubauer, S. C. Global warming potential is not an ecosystem property. Ecosystems https://doi.org/10.1007/s10021-021-00631-x (2021).

  • Howard, J., Hoyt, S., Isensee, K., Telszewski, M. & Pidgeon, E. Coastal blue carbon: methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrasses. 1–181 (2014). https://unesdoc.unesco.org/ark:/48223/pf0000372868.

  • Berg, P., Huettel, M., Glud, R. N., Reimers, C. E. & Attard, K. M. Aquatic eddy covariance: the method and its contributions to defining oxygen and carbon fluxes in marine environments. Ann. Rev. Mar. Sci. 14, 431–455 (2022).

    Article 

    Google Scholar 

  • Tokoro, T., Watanabe, K., Tada, K. & Kuwae, T. Air–water CO2 flux in shallow coastal waters: theory, methods, and empirical studies. in Blue Carbon in Shallow Coastal Ecosystems 153–184 (Springer Singapore, 2019).

  • Saintilan, N., Rogers, K., Mazumder, D. & Woodroffe, C. Allochthonous and autochthonous contributions to carbon accumulation and carbon store in southeastern Australian coastal wetlands. Estuar. Coast. Shelf Sci. 128, 84–92 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Ollivier, Q. R., Maher, D. T., Pitfield, C. & Macreadie, P. I. Net drawdown of greenhouse gases (CO2, CH4 and N2O) by a temperate australian seagrass meadow. Estuaries Coasts https://doi.org/10.1007/s12237-022-01068-8 (2022).

  • Maher, D. T. et al. Novel use of cavity ring-down spectroscopy to investigate aquatic carbon cycling from microbial to ecosystem scales. Environ. Sci. Technol. 47, 12938–12945 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Call, M. et al. Spatial and temporal variability of carbon dioxide and methane fluxes over semi-diurnal and spring–neap–spring timescales in a mangrove creek. Geochim. Cosmochim. Acta 150, 211–225 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Maher, D. T., Cowley, K., Santos, I. R., Macklin, P. & Eyre, B. D. Methane and carbon dioxide dynamics in a subtropical estuary over a diel cycle: Insights from automated in situ radioactive and stable isotope measurements. Mar. Chem. 168, 69–79 (2015).

    Article 
    CAS 

    Google Scholar 

  • Attard, K. M. et al. Seasonal metabolism and carbon export potential of a key coastal habitat: The perennial canopy-forming macroalga Fucus vesiculosus. Limnol. Oceanogr. 64, 149–164 (2019).

    Article 
    ADS 

    Google Scholar 

  • Attard, K. M. et al. Seasonal ecosystem metabolism across shallow benthic habitats measured by aquatic eddy covariance. Limnol. Oceanogr. Lett. 4, 79–86 (2019).

    Article 

    Google Scholar 

  • Trevathan-Tackett, S. M. et al. Comparison of marine macrophytes for their contributions to blue carbon sequestration. Ecology 96, 3043–3057 (2015).

    Article 

    Google Scholar 

  • Pessarrodona, A. et al. Global seaweed productivity. Sci. Adv. 8, eabn2465 (2022).

  • Machado, L., Magnusson, M., Paul, N. A., de Nys, R. & Tomkins, N. Effects of marine and freshwater macroalgae on in vitro total gas and methane production. PLoS ONE 9, e85289 (2014).

    Article 
    ADS 

    Google Scholar 

  • Hansson, G. Methane production from marine, green macro-algae. Resour. Conserv. 8, 185–194 (1983).

    Article 
    CAS 

    Google Scholar 

  • Björk, M., Rosenqvist, G., Gröndahl, F. & Bonaglia, S. Methane emissions from macrophyte beach wrack on Baltic seashores. Ambio 52, 171–181 (2023).

    Article 

    Google Scholar 

  • Lundevall-Zara, M., Lundevall-Zara, E. & Brüchert, V. Sea-air exchange of methane in shallow inshore areas of the Baltic sea. Front. Mar. Sci. 8, 1–20 (2021).

    Article 

    Google Scholar 

  • Yvon-Durocher, G. et al. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507, 488–491 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Roth, F. et al. High spatiotemporal variability of methane concentrations challenges estimates of emissions across vegetated coastal ecosystems. Glob. Chang. Biol. https://doi.org/10.1111/gcb.16177 (2022).

  • Koweek, D. A. et al. A year in the life of a central California kelp forest: physical and biological insights into biogeochemical variability. Biogeosciences 14, 31–44 (2017).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Watanabe, K. et al. Macroalgal metabolism and lateral carbon flows can create significant carbon sinks. Biogeosciences 17, 2425–2440 (2020).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Möller, P., Pihl, L. & Rosenberg, R. Benthic faunal energy flow and biological interaction in some shallow marine soft bottom habitats. Mar. Ecol. Prog. Ser. 27, 109–121 (1985).

    Article 
    ADS 

    Google Scholar 

  • Frigstad, H. et al. Blue Carbon – Climate Adaptation, CO2 Uptake And Sequestration Of Carbon In Nordic Blue Forests – Results From The Nordic Blue Carbon Project. (Nordic Council of Ministers, 2021).

  • Ikawa, H. & Oechel, W. C. Temporal variations in air-sea CO 2 exchange near large kelp beds near San Diego, California. J. Geophys. Res. Ocean. 120, 50–63 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Reeburgh, W. S. Oceanic methane biogeochemistry. Chem. Rev. 107, 486–513 (2007).

    Article 
    CAS 

    Google Scholar 

  • Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Oreska, M. P. J. et al. The greenhouse gas offset potential from seagrass restoration. Sci. Rep. 10, 1–15 (2020).

    Article 

    Google Scholar 

  • Asplund, M. E. et al. Methane emissions from nordic seagrass meadow sediments. Front. Mar. Sci. 8, 811533 (2022).

    Article 

    Google Scholar 

  • Schorn, S., Ahmerkamp, S., Bullock, E., Weber, M. & Lott, C. Diverse methylotrophic methanogenic archaea cause high methane emissions from seagrass meadows. Proc. Natl Acad. Sci. USA. https://doi.org/10.1073/pnas.2106628119/-/DCSupplemental.Published (2022).

  • Koebsch, F., Glatzel, S. & Jurasinski, G. Vegetation controls methane emissions in a coastal brackish fen. Wetl. Ecol. Manag. 21, 323–337 (2013).

    Article 
    CAS 

    Google Scholar 

  • Sansone, F. J. & Martens, C. S. Methane production from acetate and associated methane fluxes from anoxic coastal sediments. Science (80-). 211, 707–709 (1981).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Egger, M. et al. Rapid sediment accumulation results in high methane effluxes from coastal sediments. PLoS ONE 11, e0161609 (2016).

    Article 

    Google Scholar 

  • Hamdan, L. J. & Wickland, K. P. Methane emissions from oceans, coasts, and freshwater habitats: New perspectives and feedbacks on climate. Limnol. Oceanogr. 61, S3–S12 (2016).

    Article 
    ADS 

    Google Scholar 

  • Cai, M. et al. Metatranscriptomics reveals different features of methanogenic archaea among global vegetated coastal ecosystems. Sci. Total Environ. 802, 149848 (2022).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Evans, P. N. et al. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics. Science (80-). 350, 434–438 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Zhang, C.-J., Pan, J., Liu, Y., Duan, C.-H. & Li, M. Genomic and transcriptomic insights into methanogenesis potential of novel methanogens from mangrove sediments. Microbiome 8, 94 (2020).

    Article 
    CAS 

    Google Scholar 

  • Hilt, S., Grossart, H., McGinnis, D. F. & Keppler, F. Potential role of submerged macrophytes for oxic methane production in aquatic ecosystems. Limnol. Oceanogr. https://doi.org/10.1002/lno.12095 (2022).

  • Söllinger, A. & Urich, T. Methylotrophic methanogens everywhere — physiology and ecology of novel players in global methane cycling. Biochem. Soc. Trans. 47, 1895–1907 (2019).

    Article 

    Google Scholar 

  • Karl, D. M. et al. Aerobic production of methane in the sea. Nat. Geosci. 1, 473–478 (2008).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • McGenity, T. J. & Sorokin, D. Y. Handbook of Hydrocarbon and Lipid Microbiology. p. 665–680 (Springer, 2010).

  • Murray, B. C., Pendleton, L., Jenkins, W. A. & Sifleet, S. Green Payments for Blue Carbon Economic Incentives for Protecting Threatened Coastal Habitats (Nicholas Institute for Environmental Policy Solutions, 2011).

  • Kuwae, T., Watanabe, A., Yoshihara, S., Suehiro, F. & Sugimura, Y. Implementation of blue carbon offset crediting for seagrass meadows, macroalgal beds, and macroalgae farming in Japan. Mar. Policy 138, 104996 (2022).

    Article 

    Google Scholar 

  • Medvedev, I. P., Rabinovich, A. B. & Kulikov, E. A. Tides in three enclosed basins: the Baltic, Black, and Caspian Seas. Front. Mar. Sci. 3, 46 (2016).

    Article 

    Google Scholar 

  • Haugen, D. A. Workshop on Micrometeorology (American Meteorological Society, 1973).

  • Weiss, R. F. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar. Chem. 2, 203–215 (1974).

    Article 
    CAS 

    Google Scholar 

  • Wiesenburg, D. A. & Guinasso, N. L. Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water. J. Chem. Eng. Data 24, 356–360 (1979).

    Article 
    CAS 

    Google Scholar 

  • Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogr. Methods 12, 351–362 (2014).

    Article 

    Google Scholar 

  • Gülzow, W. et al. One year of continuous measurements constraining methane emissions from the Baltic Sea to the atmosphere using a ship of opportunity. Biogeosciences 10, 81–99 (2013).

    Article 
    ADS 

    Google Scholar 

  • Jähne, B. et al. On the parameters influencing air-water gas exchange. J. Geophys. Res. 92, 1937 (1987).

    Article 
    ADS 

    Google Scholar 

  • Bonaglia, S. et al. Meiofauna improve oxygenation and accelerate sulfide removal in the seasonally hypoxic seabed. Mar. Environ. Res. 159, 104968 (2020).

    Article 
    CAS 

    Google Scholar 

  • Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).

    Article 
    CAS 

    Google Scholar 

  • Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015).

    Article 

    Google Scholar 

  • St John, J. SeqPrep. https://github.com/jstjohn/SeqPrep (2011).

  • Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article 
    CAS 

    Google Scholar 

  • R Core Team. R: A Language And Environment For Statistical Computing (R Foundation for Statistical Computing, 2021).

  • Andrews, S. FastQC: A Quality Control Tool For High Throughput Sequence Data (2010).

  • Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).

    Article 
    CAS 

    Google Scholar 

  • Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41, D590–D596 (2012).

    Article 

    Google Scholar 

  • Robertson, C. E. et al. Explicet: graphical user interface software for metadata-driven management, analysis and visualization of microbiome data. Bioinformatics 29, 3100–3101 (2013).

    Article 
    CAS 

    Google Scholar 

  • Coolen, M. J. L. et al. Evolution of the methane cycle in Ace Lake (Antarctica) during the Holocene: response of methanogens and methanotrophs to environmental change. Org. Geochem. 35, 1151–1167 (2004).

    Article 
    CAS 

    Google Scholar 

  • Wobbrock, J. O., Findlater, L., Gergle, D. & Higgins, J. J. The aligned rank transform for nonparametric factorial analyses using only anova procedures. in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems 143–146 (ACM, 2011).

  • Hammer, Ø., Harper, D. & Ryan, P. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).


  • Source: Ecology - nature.com

    Bee species perform distinct foraging behaviors that are best described by different movement models

    Alfred Russel Wallace’s first expedition ended in flames