Sawyer, S. J. & Bloch, C. P. Effects of carrion decomposition on litter arthropod assemblages. Ecol. Entomol. 45, 1499–1503. https://doi.org/10.1111/een.12910 (2020).
Google Scholar
Galante, E. & Marcos-Garcia, M. A. Decomposer insects. In Encyclopedia of Entomology (ed. Capinera, J. L.) 1158–1168 (Kluwer Academic Publisher, 2008).
Byrd, J. H. & Castner, J. L. Insects of forensic importance. In Forensic Entomology: The Utility of Arthropods in Legal Investigations (ed. Byrd, J. H.) 39–126 (CRC Press, 2009).
Google Scholar
Cruzado-Caballero, P. et al. Bioerosion and palaeoecological association of osteophagous insects in the Maastrichtian dinosaur Arenysaurus ardevoli. Lethaia 54, 957–968 (2021).
Paes Neto, V. D. et al. Oldest evidence of osteophagic behavior by insects from the Triassic of Brazil. Palaeogeogr. Palaeoclimatol. Palaeoecol. 453, 30–41 (2016).
Google Scholar
Grimaldi, D. A. Amber: Window to the Past (AMNH, 1996).
Holden, A. R., Harris, J. M. & Timm, R. M. Paleoecological and taphonomic implications of insect-damaged Pleistocene vertebrate remains from Rancho La Brea, Southern California. PLoS ONE 8(7), e67119. https://doi.org/10.1371/journal.pone.0067119 (2013).
Google Scholar
Zherikhin, V. V. Chapter 3.2. Ecological history of the terrestrial insects. In History of Insects (eds Rasnitsyn, A. P. & Quicke, D. L. J.) 331–388 (Kluwer Academic Publisher, 2002).
Boucot, A. J. Evolutionary Paleobiology of Behavior and Coevolution (Elsevier, 1990).
Boucot, A. J. & Poinar, G. O. Jr. Fossil Behavior Compendium (CRC Press, 2010).
Google Scholar
Martı́nez-Delclòs, X., Briggs, D. E. & Peñalver, E. Taphonomy of insects in carbonates and amber. Palaeogeogr. Palaeoclimatol. Palaeoecol. 203(1–2), 19–64 (2004).
Google Scholar
Solórzano Kraemer, M. M. et al. Arthropods in modern resins reveal if amber accurately recorded forest arthropod communities. Proc. Natl. Acad. Sci. USA 115(26), 6739–6744. https://doi.org/10.1073/pnas.1802138115 (2018).
Google Scholar
Álvarez-Parra, S., Delclòs, X., Solórzano-Kraemer, M. M., Alcalá, L. & Peñalver, E. Cretaceous amniote integuments recorded through a taphonomic process unique to resins. Sci. Rep. 10(1), 19840. https://doi.org/10.1038/s41598-020-76830-8 (2020).
Google Scholar
Jordan, F. Keystone species and food webs. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364(1524), 1733–1741 (2009).
Google Scholar
Baranov, V. et al. Synchrotron-radiation computed tomography uncovers ecosystem functions of fly larvae in an Eocene forest. Palaeontol. Electron. 24(1), a07. https://doi.org/10.26879/1129 (2021).
Google Scholar
Cornaby, B. W. Carrion reduction by animals in contrasting tropical habitats. Biotropica 6(1), 51–63 (1974).
Google Scholar
Barton, P. S., Cunningham, S. A., Lindenmayer, D. B. & Manning, A. D. The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia 171(4), 761–772 (2013).
Google Scholar
Kneidel, K. A. Influence of carcass taxon and size on species composition of carrion-breeding Diptera. Am. Midl. Nat. 111(1), 57–63 (1984).
Google Scholar
Lewis, A. The ecology of carrion decomposition: Necrophagous invertebrate assembly and microbial community metabolic activity during decomposition of Sus scrofa carcasses in a temperate mid-west forest (Master Thesis, University of Dayton, 2011).
Vasconcelos, S. D. & Araujo, M. Necrophagous species of Diptera and Coleoptera in northeastern Brazil: State of the art and challenges for the Forensic Entomologist. Rev. Bras. Entomol. 56(1), 7–14 (2012).
Google Scholar
Vasconcelos, S. D., Cruz, T. M., Salgado, R. L. & Thyssen, P. J. Dipterans associated with a decomposing animal carcass in a rainforest fragment in Brazil: Notes on the early arrival and colonization by necrophagous species. J. Insect Sci. 13(145), 1–11. https://doi.org/10.1673/031.013.14501 (2013).
Google Scholar
Solórzano Kraemer, M. M., Kraemer, A. S., Stebner, F., Bickel, D. J. & Rust, J. Entrapment bias of arthropods in Miocene amber revealed by trapping experiments in a tropical forest in Chiapas, Mexico. PLoS ONE 10(3), e0118820. https://doi.org/10.1371/journal.pone.0118820 (2015).
Google Scholar
Solórzano Kraemer, M. M. & Brown, B. V. Dohrniphora (Diptera: Phoridae) from the Miocene Mexican and Dominican ambers with a paleobiological reconstruction. Insect Syst. Evol. 49(3), 299–327 (2018).
Google Scholar
Perrichot, V. & Girard, V. A unique piece of amber and the complexity of ancient forest ecosystems. Palaios 24(3), 137–139 (2009).
Google Scholar
Wichard, W. Taphozönosen im Baltischen Bernstein. Denisia 26, 257–266 (2009).
Penney, D. & Langan, A. M. Comparing amber fossil assemblages across the Cenozoic. Biol. Lett. 2(2), 266–270 (2006).
Google Scholar
Koteja, J. Report of the IInd Paleoentomological Meeting, Cracow, March 21–22, 1986 (in Polish). Incl.-Wrostek 4, 1–6 (1986).
Koteja, J. Stellate hairs—Index fossils of ambers. Incl.-Wrostek 5, 4–8 (1986).
Koteja, J. Syninclusions. Incl.-Wrostek 22, 10–12 (1996).
Lozano, R. P. et al. Phloem sap in Cretaceous ambers as abundant double emulsions preserving organic and inorganic residues. Sci. Rep. 10, 9751. https://doi.org/10.1038/s41598-020-66631-4 (2020).
Google Scholar
Heinrichs, J. et al. Lejeuneaceae (Marchantiophyta) from a species-rich taphocoenosis in Miocene Mexican amber, with a review of liverworts fossilised in amber. Rev. Palaeobot. Palynol. 221, 59–70 (2015).
Google Scholar
Peñalver, E. et al. Ticks parasitised feathered dinosaurs as revealed by Cretaceous amber assemblages. Nat. Commun. 8(1), 1924. https://doi.org/10.1038/s41467-017-01550-z (2017).
Google Scholar
Sánchez-García, A., Peñalver, E., Delclòs, X. & Engel, M. S. Mating and aggregative behaviors among basal hexapods in the Early Cretaceous. PLoS ONE 13(2), e0191669. https://doi.org/10.1371/journal.pone.0191669 (2018).
Google Scholar
Grimaldi, D. A., Peñalver, E., Barrón, E., Herhold, H. W. & Engel, M. S. Direct evidence for eudicot pollen-feeding in a Cretaceous stinging wasp (Angiospermae; Hymenoptera, Aculeata) preserved in Burmese amber. Commun. Biol. 2(1), 408. https://doi.org/10.1038/s42003-019-0652-7 (2019).
Google Scholar
Pérez-de la Fuente, R., Engel, M. S., Azar, D. & Peñalver, E. The hatching mechanism of 130-million-year-old insects: An association of neonates, egg shells and egg bursters in Lebanese amber. Palaeontology 62(4), 547–559 (2019).
Google Scholar
Robin, N., D’haese, C. & Barden, P. Fossil amber reveals springtails’ longstanding dispersal by social insects. BMC Evol. Biol. 19(1), 213. https://doi.org/10.1186/s12862-019-1529-6 (2019).
Google Scholar
Coty, D. et al. The first ant-termite syninclusion in amber with CT-Scan analysis of taphonomy. PLoS ONE 9(8), e104410. https://doi.org/10.1371/journal.pone.0104410 (2014).
Google Scholar
Peñalver, E. & Grimaldi, D. Assemblages of mammalian hair and blood-feeding midges (Insecta: Diptera: Psychodidae: Phlebotominae) in Miocene amber. Trans. R. Soc. Edinb. Earth Sci. 96, 177–195 (2006).
Google Scholar
Bolet, A. et al. Unusual morphology in the mid-Cretaceous lizard Oculudentavis. Curr. Biol. 31, 3303–3314. https://doi.org/10.1016/j.cub.2021.05.040 (2021).
Google Scholar
Kundrata, R., Packova, G., Prosvirov, A. S. & Hoffmannova, J. The fossil record of elateridae (Coleoptera: Elateroidea): Described species. Curr. Probl. Future Prospects Insects 12(4), 286. https://doi.org/10.3390/insects12040286 (2021).
Google Scholar
Wagner, P., Stanley, E. L., Daza, J. D. & Bauer, A. M. A new agamid lizard in mid-Cretaceous amber from northern Myanmar. Cretac. Res. 124, 104813. https://doi.org/10.1016/j.cretres.2021.104813 (2021).
Google Scholar
Barthel, H. J., Fougerouse, D., Geisler, T. & Rust, J. Fluoridation of a lizard bone embedded in Dominican amber suggests open-system behavior. PLoS ONE 15(2), e0228843 (2020).
Google Scholar
Arillo, A. Paleoethology: fossilized behaviours in amber. Geol. Acta 5(2), 159–166 (2007).
Xing, L. et al. A mid-Cretaceous enantiornithine (Aves) hatchling preserved in Burmese amber with unusual plumage. Gondwana Res. 49, 264–277 (2017).
Google Scholar
Daza, J. D., Stanley, E. L., Wagner, P., Bauer, A. M. & Grimaldi, D. A. Mid-Cretaceous amber fossils illuminate the past diversity of tropical lizards. Sci. Adv. 2(3), e1501080. https://doi.org/10.1126/sciadv.1501080 (2016).
Google Scholar
Wang, M. & Xing, L. A brief review of lizard inclusions in amber. Biol. Syst. 1(01), 39–53 (2020).
Google Scholar
Perrichot, V. Early Cretaceous amber from south-western France: insight into the Mesozoic litter fauna. Geol. Acta 2(1), 9–22 (2004).
De Baets, K., Huntley, J. W., Klompmaker, A. A., Schiffbauer, J. D. & Muscente, A. D. The fossil record of parasitism: its extent and taphonomic constraints. In The Evolution and Fossil Record of Parasitism (eds De Baets, K. & Huntley, J. W.) 1–50 (Springer, 2021).
Martín-Perea, D. M. et al. Recurring taphonomic processes in the carnivoran-dominated Late Miocene assemblages of Batallones-3, Madrid Basin. Spain. Lethaia 54, 871–890 (2021).
Delventhal, R. et al. The taste response to ammonia in Drosophila. Sci. Rep. 7(1), 43754. https://doi.org/10.1038/srep43754 (2017).
Google Scholar
McCoy, V. E., Soriano, C. & Gabbott, S. E. A review of preservational variation of fossil inclusions in amber of different chemical groups. Earth Environ. Sci. Trans. R. Soc. Edinb. 107(2–3), 203–211 (2016).
McCoy, V. E. et al. Unlocking preservation bias in the amber insect fossil record through experimental decay. PLoS ONE 13(4), e0195482. https://doi.org/10.1371/journal.pone.0195482 (2018).
Google Scholar
Weihrauch, D., Donini, A. & O’Donnell, M. J. Ammonia transport by terrestrial and aquatic insects. J. Insect Physiol. 58(4), 473–487 (2012).
Google Scholar
Clements, T., Colleary, C., De Baets, K. & Vinther, J. Buoyancy mechanisms limit preservation of coleoid cephalopod soft tissues in Mesozoic Lagerstätten. Palaeontology 60(1), 1–14 (2017).
Google Scholar
Grimaldi, D. & Engel, M. S. Evolution of the Insects (University Press, 2005).
Boehme, P., Amendt, J., Disney, R. H. L. & Zehner, R. Molecular identification of carrion-breeding scuttle flies (Diptera: Phoridae) using COI barcodes. Int. J. Legal Med. 124(6), 577–581 (2010).
Google Scholar
Disney, R. H. L. Scuttle Flies—The Phoridae (Chapman & Hall, 1994).
Google Scholar
Hong, Y. C. Eocene Fossil Diptera Insecta in Amber of Fushun Coalfield (Geological Publishing House, 1981).
Brues, C. T. Fossil Phoridae in Baltic amber. Bull. Mus. Comp. Zool 85, 413–436 (1939).
Brown, B. V. Re-evaluation of the fossil Phoridae. J. Nat. Hist. 33, 1561–1573 (1999).
Google Scholar
Tomberlin, J. K., Benbow, M. E., Tarone, A. M. & Mohr, R. M. Basic research in evolution and ecology enhances forensics. Trends Ecol. Evol. 26(2), 53–55 (2011).
Google Scholar
Downes, J. A. & Smith, S. M. New or little known feeding habits in Empididae (Diptera). Can. Entomol. 101(4), 404–408 (1969).
Google Scholar
Daugeron, C. Evolution of feeding and mating behaviors in the Empidoidea (Diptera: Eremoneura). In The Origin of Biodiversity in INSECTS: TEsts of Evolutionary Scenarios (ed. Grandcolas, P.) 163–182 (Mémoires du Muséum National d’Histoire Naturelle, Zoologie, 1997).
Sherratt, E. et al. Amber fossils demonstrate deep-time stability of Caribbean lizard communities. Proc. Natl. Acad. Sci. USA 112(32), 9961–9966 (2015).
Google Scholar
de Queiroz, K., Chu, L. R. & Losos, J. B. A second Anolis lizard in Dominican amber and the systematics and ecological morphology of Dominican amber anoles. Am. Mus. Novit. 3249, 1–23 (1998).
Castañeda, M. D. R., Sherratt, E. & Losos, J. The Mexican amber anole, Anolis electrum, within a phylogenetic context: Implications for the origins of Caribbean anoles. Zool. J. Linn. Soc. 172(1), 133–144 (2014).
Google Scholar
Sun, Q., Haynes, K. F. & Zhou, X. Managing the risks and rewards of death in eusocial insects. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373(1754), 20170258 (2018).
Google Scholar
López-Riquelme, G. O. & Fanjul-Moles, M. L. The funeral ways of social insects. Social strategies for corpse disposal. Trends Entomol. 9, 71–129 (2013).
Barden, P. & Grimaldi, D. A. Adaptive radiation in socially advanced stem-group ants from the Cretaceous. Curr. Biol. 26(4), 515–521 (2016).
Google Scholar
Schultheiss, P. et al. The abundance, biomass, and distribution of ants on Earth. Proc. Natl. Acad. Sci. USA 119(40), e2201550119 (2022).
Google Scholar
Grimaldi, D. A., Engel, M. S. & Nascimbene, P. C. Fossiliferous Cretaceous amber from Myanmar (Burma): Its rediscovery, biotic diversity, and paleontological significance. Am. Mus. Novit. 2002(3361), 1–71 (2002).
Google Scholar
Barden, P. & Grimaldi, D. A diverse ant fauna from the mid-Cretaceous of Myanmar (Hymenoptera: Formicidae). PLoS ONE 9(4), e93627. https://doi.org/10.1371/journal.pone.0093627 (2014).
Google Scholar
Shi, G. et al. Age constraint on Burmese amber based on U-Pb dating of zircons. Cretac. Res. 37, 155–163 (2012).
Google Scholar
Xing, L. & Qiu, L. Zircon UPb age constraints on the mid-Cretaceous Hkamti amber biota in northern Myanmar. Palaeogeogr. Palaeoclimatol. Palaeoecol. 558, 109960 (2020).
Google Scholar
Musa, M., Kaye, T. G., Bieri, W. & Peretti, A. Burmese amber compared using micro-attenuated total reflection infrared spectroscopy and ultraviolet imaging. Appl. Spectrosc. 75(7), 839–845. https://doi.org/10.1177/0003702820986880 (2021).
Google Scholar
Peretti, A. & Bieri, W. PMF collection data depository of analysis by FTIR, PL, CT-and UV imaging of amber containing holotype Yaksha perettii and Oculudentavis naga and comparative amber samples, and associated invertebrate inclusions. J. Appl. Ethic. Min. Nat. Resour. Paleontol. 2, 1–37 (2021).
Peretti, A. An alternative perspective for acquisitions of amber from Myanmar including recommendations of the United Nations Human Rights Council. J. Int. Humanit. Action 6(1), 1–6 (2021).
Google Scholar
Source: Ecology - nature.com