in

Necrophagy by insects in Oculudentavis and other lizard body fossils preserved in Cretaceous amber

  • Sawyer, S. J. & Bloch, C. P. Effects of carrion decomposition on litter arthropod assemblages. Ecol. Entomol. 45, 1499–1503. https://doi.org/10.1111/een.12910 (2020).

    Article 

    Google Scholar 

  • Galante, E. & Marcos-Garcia, M. A. Decomposer insects. In Encyclopedia of Entomology (ed. Capinera, J. L.) 1158–1168 (Kluwer Academic Publisher, 2008).

    Google Scholar 

  • Byrd, J. H. & Castner, J. L. Insects of forensic importance. In Forensic Entomology: The Utility of Arthropods in Legal Investigations (ed. Byrd, J. H.) 39–126 (CRC Press, 2009).

    Chapter 

    Google Scholar 

  • Cruzado-Caballero, P. et al. Bioerosion and palaeoecological association of osteophagous insects in the Maastrichtian dinosaur Arenysaurus ardevoli. Lethaia 54, 957–968 (2021).

    Google Scholar 

  • Paes Neto, V. D. et al. Oldest evidence of osteophagic behavior by insects from the Triassic of Brazil. Palaeogeogr. Palaeoclimatol. Palaeoecol. 453, 30–41 (2016).

    Article 

    Google Scholar 

  • Grimaldi, D. A. Amber: Window to the Past (AMNH, 1996).

    Google Scholar 

  • Holden, A. R., Harris, J. M. & Timm, R. M. Paleoecological and taphonomic implications of insect-damaged Pleistocene vertebrate remains from Rancho La Brea, Southern California. PLoS ONE 8(7), e67119. https://doi.org/10.1371/journal.pone.0067119 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zherikhin, V. V. Chapter 3.2. Ecological history of the terrestrial insects. In History of Insects (eds Rasnitsyn, A. P. & Quicke, D. L. J.) 331–388 (Kluwer Academic Publisher, 2002).

    Google Scholar 

  • Boucot, A. J. Evolutionary Paleobiology of Behavior and Coevolution (Elsevier, 1990).

    Google Scholar 

  • Boucot, A. J. & Poinar, G. O. Jr. Fossil Behavior Compendium (CRC Press, 2010).

    Book 

    Google Scholar 

  • Martı́nez-Delclòs, X., Briggs, D. E. & Peñalver, E. Taphonomy of insects in carbonates and amber. Palaeogeogr. Palaeoclimatol. Palaeoecol. 203(1–2), 19–64 (2004).

    Article 

    Google Scholar 

  • Solórzano Kraemer, M. M. et al. Arthropods in modern resins reveal if amber accurately recorded forest arthropod communities. Proc. Natl. Acad. Sci. USA 115(26), 6739–6744. https://doi.org/10.1073/pnas.1802138115 (2018).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Álvarez-Parra, S., Delclòs, X., Solórzano-Kraemer, M. M., Alcalá, L. & Peñalver, E. Cretaceous amniote integuments recorded through a taphonomic process unique to resins. Sci. Rep. 10(1), 19840. https://doi.org/10.1038/s41598-020-76830-8 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jordan, F. Keystone species and food webs. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364(1524), 1733–1741 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baranov, V. et al. Synchrotron-radiation computed tomography uncovers ecosystem functions of fly larvae in an Eocene forest. Palaeontol. Electron. 24(1), a07. https://doi.org/10.26879/1129 (2021).

    Article 

    Google Scholar 

  • Cornaby, B. W. Carrion reduction by animals in contrasting tropical habitats. Biotropica 6(1), 51–63 (1974).

    Article 

    Google Scholar 

  • Barton, P. S., Cunningham, S. A., Lindenmayer, D. B. & Manning, A. D. The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia 171(4), 761–772 (2013).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Kneidel, K. A. Influence of carcass taxon and size on species composition of carrion-breeding Diptera. Am. Midl. Nat. 111(1), 57–63 (1984).

    Article 

    Google Scholar 

  • Lewis, A. The ecology of carrion decomposition: Necrophagous invertebrate assembly and microbial community metabolic activity during decomposition of Sus scrofa carcasses in a temperate mid-west forest (Master Thesis, University of Dayton, 2011).

  • Vasconcelos, S. D. & Araujo, M. Necrophagous species of Diptera and Coleoptera in northeastern Brazil: State of the art and challenges for the Forensic Entomologist. Rev. Bras. Entomol. 56(1), 7–14 (2012).

    Article 

    Google Scholar 

  • Vasconcelos, S. D., Cruz, T. M., Salgado, R. L. & Thyssen, P. J. Dipterans associated with a decomposing animal carcass in a rainforest fragment in Brazil: Notes on the early arrival and colonization by necrophagous species. J. Insect Sci. 13(145), 1–11. https://doi.org/10.1673/031.013.14501 (2013).

    Article 

    Google Scholar 

  • Solórzano Kraemer, M. M., Kraemer, A. S., Stebner, F., Bickel, D. J. & Rust, J. Entrapment bias of arthropods in Miocene amber revealed by trapping experiments in a tropical forest in Chiapas, Mexico. PLoS ONE 10(3), e0118820. https://doi.org/10.1371/journal.pone.0118820 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Solórzano Kraemer, M. M. & Brown, B. V. Dohrniphora (Diptera: Phoridae) from the Miocene Mexican and Dominican ambers with a paleobiological reconstruction. Insect Syst. Evol. 49(3), 299–327 (2018).

    Article 

    Google Scholar 

  • Perrichot, V. & Girard, V. A unique piece of amber and the complexity of ancient forest ecosystems. Palaios 24(3), 137–139 (2009).

    Article 
    ADS 

    Google Scholar 

  • Wichard, W. Taphozönosen im Baltischen Bernstein. Denisia 26, 257–266 (2009).

    Google Scholar 

  • Penney, D. & Langan, A. M. Comparing amber fossil assemblages across the Cenozoic. Biol. Lett. 2(2), 266–270 (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koteja, J. Report of the IInd Paleoentomological Meeting, Cracow, March 21–22, 1986 (in Polish). Incl.-Wrostek 4, 1–6 (1986).

    Google Scholar 

  • Koteja, J. Stellate hairs—Index fossils of ambers. Incl.-Wrostek 5, 4–8 (1986).

    Google Scholar 

  • Koteja, J. Syninclusions. Incl.-Wrostek 22, 10–12 (1996).

    Google Scholar 

  • Lozano, R. P. et al. Phloem sap in Cretaceous ambers as abundant double emulsions preserving organic and inorganic residues. Sci. Rep. 10, 9751. https://doi.org/10.1038/s41598-020-66631-4 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Heinrichs, J. et al. Lejeuneaceae (Marchantiophyta) from a species-rich taphocoenosis in Miocene Mexican amber, with a review of liverworts fossilised in amber. Rev. Palaeobot. Palynol. 221, 59–70 (2015).

    Article 

    Google Scholar 

  • Peñalver, E. et al. Ticks parasitised feathered dinosaurs as revealed by Cretaceous amber assemblages. Nat. Commun. 8(1), 1924. https://doi.org/10.1038/s41467-017-01550-z (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sánchez-García, A., Peñalver, E., Delclòs, X. & Engel, M. S. Mating and aggregative behaviors among basal hexapods in the Early Cretaceous. PLoS ONE 13(2), e0191669. https://doi.org/10.1371/journal.pone.0191669 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grimaldi, D. A., Peñalver, E., Barrón, E., Herhold, H. W. & Engel, M. S. Direct evidence for eudicot pollen-feeding in a Cretaceous stinging wasp (Angiospermae; Hymenoptera, Aculeata) preserved in Burmese amber. Commun. Biol. 2(1), 408. https://doi.org/10.1038/s42003-019-0652-7 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pérez-de la Fuente, R., Engel, M. S., Azar, D. & Peñalver, E. The hatching mechanism of 130-million-year-old insects: An association of neonates, egg shells and egg bursters in Lebanese amber. Palaeontology 62(4), 547–559 (2019).

    Article 

    Google Scholar 

  • Robin, N., D’haese, C. & Barden, P. Fossil amber reveals springtails’ longstanding dispersal by social insects. BMC Evol. Biol. 19(1), 213. https://doi.org/10.1186/s12862-019-1529-6 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coty, D. et al. The first ant-termite syninclusion in amber with CT-Scan analysis of taphonomy. PLoS ONE 9(8), e104410. https://doi.org/10.1371/journal.pone.0104410 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Peñalver, E. & Grimaldi, D. Assemblages of mammalian hair and blood-feeding midges (Insecta: Diptera: Psychodidae: Phlebotominae) in Miocene amber. Trans. R. Soc. Edinb. Earth Sci. 96, 177–195 (2006).

    Article 

    Google Scholar 

  • Bolet, A. et al. Unusual morphology in the mid-Cretaceous lizard Oculudentavis. Curr. Biol. 31, 3303–3314. https://doi.org/10.1016/j.cub.2021.05.040 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kundrata, R., Packova, G., Prosvirov, A. S. & Hoffmannova, J. The fossil record of elateridae (Coleoptera: Elateroidea): Described species. Curr. Probl. Future Prospects Insects 12(4), 286. https://doi.org/10.3390/insects12040286 (2021).

    Article 

    Google Scholar 

  • Wagner, P., Stanley, E. L., Daza, J. D. & Bauer, A. M. A new agamid lizard in mid-Cretaceous amber from northern Myanmar. Cretac. Res. 124, 104813. https://doi.org/10.1016/j.cretres.2021.104813 (2021).

    Article 

    Google Scholar 

  • Barthel, H. J., Fougerouse, D., Geisler, T. & Rust, J. Fluoridation of a lizard bone embedded in Dominican amber suggests open-system behavior. PLoS ONE 15(2), e0228843 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arillo, A. Paleoethology: fossilized behaviours in amber. Geol. Acta 5(2), 159–166 (2007).

    Google Scholar 

  • Xing, L. et al. A mid-Cretaceous enantiornithine (Aves) hatchling preserved in Burmese amber with unusual plumage. Gondwana Res. 49, 264–277 (2017).

    Article 
    ADS 

    Google Scholar 

  • Daza, J. D., Stanley, E. L., Wagner, P., Bauer, A. M. & Grimaldi, D. A. Mid-Cretaceous amber fossils illuminate the past diversity of tropical lizards. Sci. Adv. 2(3), e1501080. https://doi.org/10.1126/sciadv.1501080 (2016).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, M. & Xing, L. A brief review of lizard inclusions in amber. Biol. Syst. 1(01), 39–53 (2020).

    CAS 

    Google Scholar 

  • Perrichot, V. Early Cretaceous amber from south-western France: insight into the Mesozoic litter fauna. Geol. Acta 2(1), 9–22 (2004).

    Google Scholar 

  • De Baets, K., Huntley, J. W., Klompmaker, A. A., Schiffbauer, J. D. & Muscente, A. D. The fossil record of parasitism: its extent and taphonomic constraints. In The Evolution and Fossil Record of Parasitism (eds De Baets, K. & Huntley, J. W.) 1–50 (Springer, 2021).

    Google Scholar 

  • Martín-Perea, D. M. et al. Recurring taphonomic processes in the carnivoran-dominated Late Miocene assemblages of Batallones-3, Madrid Basin. Spain. Lethaia 54, 871–890 (2021).

    Google Scholar 

  • Delventhal, R. et al. The taste response to ammonia in Drosophila. Sci. Rep. 7(1), 43754. https://doi.org/10.1038/srep43754 (2017).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McCoy, V. E., Soriano, C. & Gabbott, S. E. A review of preservational variation of fossil inclusions in amber of different chemical groups. Earth Environ. Sci. Trans. R. Soc. Edinb. 107(2–3), 203–211 (2016).

    Google Scholar 

  • McCoy, V. E. et al. Unlocking preservation bias in the amber insect fossil record through experimental decay. PLoS ONE 13(4), e0195482. https://doi.org/10.1371/journal.pone.0195482 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weihrauch, D., Donini, A. & O’Donnell, M. J. Ammonia transport by terrestrial and aquatic insects. J. Insect Physiol. 58(4), 473–487 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Clements, T., Colleary, C., De Baets, K. & Vinther, J. Buoyancy mechanisms limit preservation of coleoid cephalopod soft tissues in Mesozoic Lagerstätten. Palaeontology 60(1), 1–14 (2017).

    Article 

    Google Scholar 

  • Grimaldi, D. & Engel, M. S. Evolution of the Insects (University Press, 2005).

    Google Scholar 

  • Boehme, P., Amendt, J., Disney, R. H. L. & Zehner, R. Molecular identification of carrion-breeding scuttle flies (Diptera: Phoridae) using COI barcodes. Int. J. Legal Med. 124(6), 577–581 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Disney, R. H. L. Scuttle Flies—The Phoridae (Chapman & Hall, 1994).

    Book 

    Google Scholar 

  • Hong, Y. C. Eocene Fossil Diptera Insecta in Amber of Fushun Coalfield (Geological Publishing House, 1981).

    Google Scholar 

  • Brues, C. T. Fossil Phoridae in Baltic amber. Bull. Mus. Comp. Zool 85, 413–436 (1939).

    Google Scholar 

  • Brown, B. V. Re-evaluation of the fossil Phoridae. J. Nat. Hist. 33, 1561–1573 (1999).

    Article 

    Google Scholar 

  • Tomberlin, J. K., Benbow, M. E., Tarone, A. M. & Mohr, R. M. Basic research in evolution and ecology enhances forensics. Trends Ecol. Evol. 26(2), 53–55 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Downes, J. A. & Smith, S. M. New or little known feeding habits in Empididae (Diptera). Can. Entomol. 101(4), 404–408 (1969).

    Article 

    Google Scholar 

  • Daugeron, C. Evolution of feeding and mating behaviors in the Empidoidea (Diptera: Eremoneura). In The Origin of Biodiversity in INSECTS: TEsts of Evolutionary Scenarios (ed. Grandcolas, P.) 163–182 (Mémoires du Muséum National d’Histoire Naturelle, Zoologie, 1997).

    Google Scholar 

  • Sherratt, E. et al. Amber fossils demonstrate deep-time stability of Caribbean lizard communities. Proc. Natl. Acad. Sci. USA 112(32), 9961–9966 (2015).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Queiroz, K., Chu, L. R. & Losos, J. B. A second Anolis lizard in Dominican amber and the systematics and ecological morphology of Dominican amber anoles. Am. Mus. Novit. 3249, 1–23 (1998).

    Google Scholar 

  • Castañeda, M. D. R., Sherratt, E. & Losos, J. The Mexican amber anole, Anolis electrum, within a phylogenetic context: Implications for the origins of Caribbean anoles. Zool. J. Linn. Soc. 172(1), 133–144 (2014).

    Article 

    Google Scholar 

  • Sun, Q., Haynes, K. F. & Zhou, X. Managing the risks and rewards of death in eusocial insects. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373(1754), 20170258 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • López-Riquelme, G. O. & Fanjul-Moles, M. L. The funeral ways of social insects. Social strategies for corpse disposal. Trends Entomol. 9, 71–129 (2013).

    Google Scholar 

  • Barden, P. & Grimaldi, D. A. Adaptive radiation in socially advanced stem-group ants from the Cretaceous. Curr. Biol. 26(4), 515–521 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schultheiss, P. et al. The abundance, biomass, and distribution of ants on Earth. Proc. Natl. Acad. Sci. USA 119(40), e2201550119 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Grimaldi, D. A., Engel, M. S. & Nascimbene, P. C. Fossiliferous Cretaceous amber from Myanmar (Burma): Its rediscovery, biotic diversity, and paleontological significance. Am. Mus. Novit. 2002(3361), 1–71 (2002).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1206/0003-0082(2002)3612.0.CO;2″ data-track-action=”article reference” href=”https://doi.org/10.1206%2F0003-0082%282002%29361%3C0001%3AFCAFMB%3E2.0.CO%3B2″ aria-label=”Article reference 71″ data-doi=”10.1206/0003-0082(2002)3612.0.CO;2″>Article 

    Google Scholar 

  • Barden, P. & Grimaldi, D. A diverse ant fauna from the mid-Cretaceous of Myanmar (Hymenoptera: Formicidae). PLoS ONE 9(4), e93627. https://doi.org/10.1371/journal.pone.0093627 (2014).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shi, G. et al. Age constraint on Burmese amber based on U-Pb dating of zircons. Cretac. Res. 37, 155–163 (2012).

    Article 

    Google Scholar 

  • Xing, L. & Qiu, L. Zircon UPb age constraints on the mid-Cretaceous Hkamti amber biota in northern Myanmar. Palaeogeogr. Palaeoclimatol. Palaeoecol. 558, 109960 (2020).

    Article 

    Google Scholar 

  • Musa, M., Kaye, T. G., Bieri, W. & Peretti, A. Burmese amber compared using micro-attenuated total reflection infrared spectroscopy and ultraviolet imaging. Appl. Spectrosc. 75(7), 839–845. https://doi.org/10.1177/0003702820986880 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Peretti, A. & Bieri, W. PMF collection data depository of analysis by FTIR, PL, CT-and UV imaging of amber containing holotype Yaksha perettii and Oculudentavis naga and comparative amber samples, and associated invertebrate inclusions. J. Appl. Ethic. Min. Nat. Resour. Paleontol. 2, 1–37 (2021).

    Google Scholar 

  • Peretti, A. An alternative perspective for acquisitions of amber from Myanmar including recommendations of the United Nations Human Rights Council. J. Int. Humanit. Action 6(1), 1–6 (2021).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Unraveling Amazon tree community assembly using Maximum Information Entropy: a quantitative analysis of tropical forest ecology

    Directional asymmetry in gonad length indicates moray eels (Teleostei, Anguilliformes, Muraenidae) are “right-gonadal”