in

Non-lethal fungal infection could reduce aggression towards strangers in ants

  • Schmid-Hempel P. Parasites in social insects. Princeton University Press (1998).

  • Lefèvre, T. et al. The ecological significance of manipulative parasites. Trends Ecol. Evol. 24, 41–48 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Elya, C. et al. Robust manipulation of the behavior of Drosophila melanogaster by a fungal pathogen in the laboratory. Elife 7, e34414 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Herbison, R., Lagrue, C. & Poulin, R. The missing link in parasite manipulation of host behaviour. Parasites Vectors 11, 1–6 (2018).

    Article 

    Google Scholar 

  • Csata, E., Billen, J., Barbu-Tudoran, L. & Markó, B. Inside Pandora’s box: development of the lethal myrmecopathogenic fungus Pandora formicae within its ant host. Fungal Ecol. 50, 101022 (2021).

    Article 

    Google Scholar 

  • Trinh, T., Ouellette, R. & de Bekker, C. Getting lost: the fungal hijacking of ant foraging behaviour in space and time. Anim. Behav. 181, 165–184 (2021).

    Article 

    Google Scholar 

  • Moore J. Parasites and the Behavior of Animals. Oxford University Press, Oxford (2002).

  • Thomas, F., Fauchier, J. & Lafferty, K. D. Conflict of interest between a nematode and a trematode in an amphipod host: test of the “sabotage” hypothesis. Behav. Ecol. Sociobiol. 51, 296–301 (2002).

    Article 

    Google Scholar 

  • Stroeymeyt, N. et al. Social network plasticity decreases disease transmission in a eusocial insect. Science 362, 941–945 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Beros, S., Foitzik, S. & Menzel, F. What are the mechanisms behind a parasite-induced decline in nestmate recognition in ants? J. Chem. Ecol. 43, 869–880 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hamilton, W. D. Kinship, recognition, disease, and intelligence: constraints of social evolution. In: Ito Y., Brown J. L., Kikkawa J. (eds) Animal societies: theories and facts. Jpn Sci Soc Press, Tokyo, pp 81–102 (1987).

  • Hunt, J. H. & Richard, F. J. Intracolony vibroacoustic communication in social insects. Insect Soc. 60, 403–417 (2013).

    Article 

    Google Scholar 

  • Wyatt, T. D. Proteins and peptides as pheromone signals and chemical signatures. Anim. Behav. 97, 273–280 (2014).

    Article 

    Google Scholar 

  • Leonhardt, S. D., Menzel, F., Nehring, V. & Schmitt, T. Ecology and evolution of communication in social insects. Cell 164, 1277–1287 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Casacci, L. P. et al. Ant pupae employ acoustics to communicate social status in their colony’s hierarchy. Curr. Biol. 23, 323–327 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schönrogge, K., Barbero, F., Casacci, L. P., Settele, J. & Thomas, J. A. Acoustic communication within ant societies and its mimicry by mutualistic and socially parasitic myrmecophiles. Anim. Behav. 134, 249–256 (2017).

    Article 

    Google Scholar 

  • Sheehan, M. J. & Tibbetts, E. A. Specialized face learning is associated with individual recognition in paper wasps. Science 334, 1272–1275 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chittka, L. & Dyer, A. Your face looks familiar. Nature 481, 154–155 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Billen, J. Signal variety and communication in social insects. Proc. Neht. Entomol. Soc. Meet. 17, 9 (2006).

    Google Scholar 

  • Blomquist G. J. Biosynthesis of cuticular hydrocarbons. In: Blomquist, G. J., Bagnères, A.-G. (eds.): Insect hydrocarbons: biology, biochemistry and chemical ecology. Cambridge University Press (2010).

  • Hefetz, A. The evolution of hydrocarbon pheromone parsimony in ants (Hymenoptera: Formicidae) – interplay of colony odor uniformity and odor idiosyncrasy. Myrmecol. N. 10, 59–68 (2007).

    Google Scholar 

  • Bagnères A. G., Lorenzi M. C. Chemical deception/mimicry using cuticular hydrocarbons. Insect hydrocarbons: Biology, biochemistry and chemical ecology. Chemical deception/mimicry using cuticular hydrocarbons, 282–324 (2010).

  • van Zweden, J. S. & d’Ettorre, P. Nestmate recognition in social insects and the role of hydrocarbons. Insect Hydrocarbons: Biol. Biochem. Chem. Ecol. 11, 222–243 (2010).

    Article 

    Google Scholar 

  • Esponda, F. & Gordon, D. M. Distributed nestmate recognition in ants. Proc. R. Soc. B. 282, 20142838 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Crozier, R. & Dix, M. W. Analysis of two genetic models for the innate components of colony odor in social Hymenoptera. Behav. Ecol. Sociobiol. 4, 217–224 (1979).

    Article 

    Google Scholar 

  • Wakonigg, G., Eveleigh, L., Arnold, G. & Crailsheim, K. Cuticular hydrocarbon profiles reveal age-related changes in honey bee drones (Apis mellifera carnica). J. Apic. Res. 39, 137–141 (2000).

    Article 
    CAS 

    Google Scholar 

  • Cuvillier-Hot, V., Cobb, M., Malosse, C. & Peeters, C. Sex, age and ovarian activity affect cuticular hydrocarbons in Diacamma ceylonense, a queenless ant. J. Insect Physiol. 47, 485–493 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Greene, M. J. & Gordon, D. M. Cuticular hydrocarbons inform task decisions. Nature 423, 32–32 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kather, R., Drijfhout, F. P. & Martin, S. J. Task group differences in cuticular lipids in the honey bee Apis mellifera. J. Chem. Ecol. 37, 205–212 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kleeberg, I., Menzel, F. & Foitzik, S. The influence of slavemaking lifestyle, caste and sex on chemical profiles in Temnothorax ants: insights into the evolution of cuticular hydrocarbons. Proc. R. Soc. B. 284, 20162249 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sprenger, P. P. & Menzel, F. Cuticular hydrocarbons in ants (Hymenoptera: Formicidae) and other insects: how and why they differ among individuals, colonies, and species. Myrmecol. N. 30, 1–26 (2020).

    Google Scholar 

  • Reeve, H. K. The evolution of conspecific acceptance thresholds. Am. Nat. 133, 407–435 (1989).

    Article 

    Google Scholar 

  • Lenoir, A., D’Ettore, P. & Errard, C. Chemical ecology and social parasitism in ants. Annu. Rev. Entomol. 46, 573–599 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Akino, T. Chemical strategies to deal with ants: a review of mimicry, camouflage, propaganda, and phytomimesis by ants (Hymenoptera: Formicidae) and other arthropods. Myrmecol. N. 11, 173–181 (2008).

    Google Scholar 

  • Akino, T., Knapp, J. J., Thomas, J. A. & Elmes, G. W. Chemical mimicry and host specificity in the butterfly Maculinea rebeli, a social parasite of Myrmica ant colonies. Proc. Roy. Soc. B. 266, 1419–1426 (1999).

    Article 
    CAS 

    Google Scholar 

  • Nash, D. R., Als, T. D., Maile, R., Jones, G. R. & Boomsma, J. J. A mosaic of chemical coevolution in a large blue butterfly. Science 319, 88–90 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Johnson, C. A., Vander Meer, R. K. & Lavine, B. Changes in the cuticular hydrocarbon profile of the slave-maker ant queen, Polyergus breviceps Emery, after killing a Formica host queen (Hymenoptera: Formicidae). J. Chem. Ecol. 27, 1787–1804 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lecuona, R., Riba, G., Cassier, P. & Clément, J. L. Alterations of insect epicuticular hydrocarbons during infection with Beauveria bassiana or B. brongniartii. J. Invertebr. Pathol. 58, 10–18 (1991).

    Article 
    CAS 

    Google Scholar 

  • Trabalon, M., Plateaux, L., Péru, L., Bagnères, A. G. & Hartmann, N. Modification of morphological characters and cuticular compounds in worker ants Leptothorax nylanderi induced by endoparasites Anomotaenia brevis. J. Insect Physiol. 46, 169–178 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zurek, L., Watson, D. W., Krasnoff, S. B. & Schal, C. Effect of the entomopathogenic fungus, Entomophthora muscae (Zygomycetes: Entomophthoraceae), on sex pheromone and other cuticular hydrocarbons of the house fly. Musca Domestica. J. Invertebr. Pathol. 80, 171–176 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nielsen, M. L. & Holman, L. Terminal investment in multiple sexual signals: immune‐challenged males produce more attractive pheromones. Func. Ecol. 26, 20–28 (2012).

    Article 

    Google Scholar 

  • Beros, S., Jongepier, E., Hagemeier, F. & Foitzik, S. The parasite’s long arm: a tapeworm parasite induces behavioural changes in uninfected group members of its social host. Proc. Roy. Soc. B. 282, 20151473 (2015).

    Article 

    Google Scholar 

  • Csata, E., Erős, K. & Markó, B. Effects of the ectoparasitic fungus Rickia wasmannii on its ant host Myrmica scabrinodis: changes in host mortality and behavior. Insectes Soc. 61, 247–252 (2014).

    Article 

    Google Scholar 

  • Markó, B. et al. Distribution of the myrmecoparasitic fungus Rickia wasmannii (Ascomycota: Laboulbeniales) across colonies, individuals, and body parts of Myrmica scabrinodis. J. Invertebr. Pathol. 136, 74–80 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Báthori, F., Csata, E. & Tartally, A. Rickia wasmannii increases the need for water in Myrmica scabrinodis (Ascomycota: Laboulbeniales; Hymenoptera: Formicidae). J. Invertebr. Pathol. 126, 7–82 (2015).

    Article 

    Google Scholar 

  • Csata, E. et al. Lock-picks: fungal infection facilitates the intrusion of strangers into ant colonies. Sci. Rep. 7, 46323 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Csata, E., Billen, J., Bernadou, A., Heinze, J. & Markó, B. Infection-related variation in cuticle thickness in the ant Myrmica scabrinodis (Hymenoptera: Formicidae). Insectes Soc. 65, 503–506 (2018).

    Article 

    Google Scholar 

  • Csősz, S., Rádai, Z., Tartally, A., Ballai, L. E. & Báthori, F. Ectoparasitic fungi Rickia wasmannii infection is associated with smaller body size in Myrmica ants. Sci. Rep. 11, 1–9 (2021).

    Article 

    Google Scholar 

  • Dani, F. R., Jones, G. R., Destri, S., Spencer, S. H. & Turillazzi, S. Deciphering the recognition signature within the cuticular chemical profile of paper wasps. Anim. Behav. 62, 165–171 (2001).

    Article 

    Google Scholar 

  • Lorenzi, M. C., Bagneres, A. G., Clément, J. L. & Turillazzi, S. Polistes biglumis bimaculatus epicuticular hydrocarbons and nestmate recognition (Hymenoptera Vespidae). Insectes Soc. 44, 123–138 (1997).

    Article 

    Google Scholar 

  • Ruther, J., Sieben, S. & Schricker, B. Nestmate recognition in social wasps: manipulation of hydrocarbon profiles induces aggression in the European hornet. Naturwissenschaften 89, 111–114 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Smith, A. A., Hölldobler, B. & Liebig, J. Cuticular hydrocarbons reliably identify cheaters and allow enforcement of altruism in a social insect. Curr. Biol. 19, 78–81 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ebsen, J. R., Boomsma, J. J. & Nash, D. R. Phylogeography and cryptic speciation in the Myrmica scabrinodis Nylander, 1846 species complex (Hymenoptera: Formicidae), and their conservation implications. Insect Conserv. Divers 12, 467–480 (2019).

    Article 

    Google Scholar 

  • Ballinger, M. J., Moore, L. D. & Perlman, S. J. Evolution and diversity of inherited Spiroplasma symbionts in Myrmica ants. Appl. Environ. Microbiol. 84, e02299–17 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Menzel, F. et al. Crematoenones – a novel substance class exhibited by ants functions as appeasement signal. Front. Zool. 10, 1–12 (2013).

    Article 

    Google Scholar 

  • Qiu, H.-L., Qin, C.-S., Fox, E. G. P., Wang, D.-S. & He, Y.-R. Differential behavioral responses of Solenopsis invicta (Hymenoptera: Formicidae) workers toward nestmate and non-nestmate corpses. J. Ins. Sci. 20, 11 (2020).

    Article 

    Google Scholar 

  • Martin, S. J., Vitikainen, E., Helanterä, H. & Drijfhout, F. P. Chemical basis of nest-mate discrimination in the ant Formica exsecta. Proc. R. Soc. B. 275, 1271–1278 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guerrieri, F. J. et al. Ants recognize foes and not friends. Proc. R. Soc. B. 276, 2461–2468 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gibbs, A. & Pomonis, J. G. Physical properties of insect cuticular hydrocarbons: the effects of chain lengths, methyl branching and unsaturation. Comp. Biochem. Physiol. 112, 243–249 (1995).

    Article 

    Google Scholar 

  • Menzel, F., Blaimer, B. B. & Schmitt, T. How do cuticular hydrocarbons evolve? Physiological constraints and climatic and biotic selection pressures act on a complex functional trait. Proc. R. Soc. B. 284, 20161727 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Breed, M. D., Leger, E. A., Pearce, A. M. & Wang, Y. J. Comb wax effects on the ontogeny of honey bee nestmate recognition. Anim. Behav. 55, 13–20 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Breed, M. D. & Stiller, T. M. Honey bee, Apis mellifera, nestmate discrimination: hydrocarbon effects and the evolutionary implications of comb choice. Anim. Behav. 43, 875–883 (1992).

    Article 

    Google Scholar 

  • Akino, T., Yamamura, K., Wakamura, S. & Yamaoka, R. Direct behavioral evidence for hydrocarbons as nestmate recognition cues in Formica japonica (Hymenoptera: Formicidae). Appl. Entomol. Zool. 39, 381–387 (2004).

    Article 
    CAS 

    Google Scholar 

  • Greene, M. J. & Gordon, D. M. Structural complexity of chemical recognition cues affects the perception of group membership in the ants Linepithema humile and Aphaenogaster cockerelli. J. Exp. Biol. 210, 897–905 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Casacci, L. P., Barbero, F., Ślipiński, P. & Witek, M. The inquiline ant Myrmica karavajevi uses both chemical and vibroacoustic deception mechanisms to integrate into its host colonies. Biology 10, 654 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bhatkar, A. & Whitcomb, W. Artificial diet for rearing various species of ants. Florid. Entomol. 53, 229–232 (1970).

    Article 

    Google Scholar 

  • Espadaler X., Santamaria S. Ecto- and endoparasitic fungi on ants from the Holarctic region. Psyche 168478, 1–10 (2012).

  • Csata, E. et al. Comprehensive survey of Romanian myrmecoparasitic fungi: new species, biology and distribution. North West J. Zool. 9, 23–29 (2013).

    Google Scholar 

  • Witek, M., Barbero, F. & Markó, B. Myrmica ants host highly diverse parasitic communities: from social parasites to microbes. Insectes Soc. 61, 307–323 (2014).

    Article 

    Google Scholar 

  • Tragust, S., Tartally, A., Espadaler, X. & Billen, J. Histopathology of Laboulbeniales (Ascomycota: Laboulbeniales): ectoparasitic fungi on ants (Hymenoptera: Formicidae). Myrmecol. N. 23, 81–89 (2016).

    Google Scholar 

  • Czekes, Z. et al. The genus Myrmica Latreille, 1804 (Hymenoptera: Formicidae) in Romania: distribution of species and key for their identification. Entomol. Rom. 17, 29–50 (2012).

    Google Scholar 

  • Buczkowski, G. & Silverman, J. Context-dependent nestmate discrimination and the effect of action thresholds on exogenous cue recognition in the Argentine ant. Anim. Behav. 69, 741–749 (2005).

    Article 

    Google Scholar 

  • Diez, L., Moquet, L. & Detrain, C. Post-mortem changes in chemical profile and their influence on corpse removal in ants. J. Chem. Ecol. 39, 1424–1432 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Csata, E., Bernadou, A., Rákosy-Tican, E., Heinze, J. & Markó, B. The effects of fungal infection and physiological condition on the locomotory behaviour of the ant Myrmica scabrinodis. J. Insect Physiol. 98, 167–172 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Moroń, D., Witek, M. & Woyciechowski, M. Division of labour among workers with different life expectancy in the ant Myrmica scabrinodis. Anim. Behav. 75, 345–350 (2008).

    Article 

    Google Scholar 

  • Bernadou, A., Felden, A., Moreau, M., Moretto, P. & Fourcassié, V. Ergonomics of load transport in the seed harvesting ant Messor barbarus: morphology influences transportation method and efficiency. J. Exp. Biol. 219, 2920–2927 (2016).

    PubMed 

    Google Scholar 

  • Keresztes, K. K., Csata, E., Lunka-Tekla, A. & Markó, B. Friend or foe? Differential aggression towards neighbors and strangers in the ant Liometopum microcephalum (Hymenoptera: Formicidae). Sci. Entomol. 23, 351–358 (2020).

    Article 

    Google Scholar 

  • Ratnasingham, S. & Hebert, P. D. BOLD: The Barcode of life data system. Mol. Ecol. Notes 7, 355–364, http://www.barcodinglife.org (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (URL <http://www.R-project.org>) (2020).

  • Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Soft. 67, 1–48 (2015).

  • Fox J., Weisberg S. Using car and effects Functions in Other Functions. Using Car Eff. Funct. Other Funct., 3, 1–5 (2020).

  • Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric 312 models. Biom. J. 50, 346–363 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Wickham H. ggplot2: elegant graphics for data analysis. (Springer Science & Business Media) (2009).


  • Source: Ecology - nature.com

    Featured video: Investigating our blue ocean planet

    How to pull carbon dioxide out of seawater