Tréguer, P. J. et al. Reviews and syntheses: The biogeochemical cycle of silicon in the modern ocean. Biogeosciences 18, 1269–1289 (2021).
Google Scholar
Tréguer, P. et al. Influence of diatom diversity on the ocean biological carbon pump. Nat. Geosci. 11, 27–37 (2018).
Google Scholar
Benoiston, A.-S. et al. The evolution of diatoms and their biogeochemical functions. Phil. Trans. R. Soc. B 372, 20160397 (2017).
Google Scholar
de Goeij, J. M. et al. Surviving in a marine desert: The sponge loop retains resources within coral reefs. Science 342, 108–110 (2013).
Google Scholar
Folkers, M. & Rombouts, T. Sponges revealed: a synthesis of their overlooked ecological functions within aquatic ecosystems. In YOUMARES 9—The Oceans: Our Research, Our Future (eds. Jungblut, S. et al.) 181–193 (Springer International Publishing, 2020).
Kristiansen, S. & Hoell, E. E. The importance of silicon for marine production. Hydrobiologia 484, 21–31 (2002).
Google Scholar
Henderson, M. J., Huff, D. D. & Yoklavich, M. M. Deep-sea coral and sponge taxa increase demersal fish diversity and the probability of fish presence. Front. Mar. Sci. 7, 593844 (2020).
Google Scholar
McGrath, E. C., Woods, L., Jompa, J., Haris, A. & Bell, J. J. Growth and longevity in giant barrel sponges: Redwoods of the reef or pines in the Indo-Pacific?. Sci. Rep. 8, 15317 (2018).
Google Scholar
Jochum, K. P., Wang, X. H., Vennemann, T. W., Sinha, B. & Muller, W. E. G. Siliceous deep-sea sponge Monorhaphis chuni: A potential paleoclimate archive in ancient animals. Chem. Geol. 300, 143–151 (2012).
Google Scholar
Maldonado, M. et al. Sponge grounds as key marine habitats: A synthetic review of types, structure, functional roles, and conservation concerns. In Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots (eds. Rossi, S. et al.) vol. 1 145–184 (Springer International Publishing, 2017).
Maldonado, M. et al. Sponge skeletons as an important sink of silicon in the global oceans. Nat. Geosci. 12, 815–822 (2019).
Google Scholar
Maldonado, M. et al. Siliceous sponges as a silicon sink: An overlooked aspect of benthopelagic coupling in the marine silicon cycle. Limnol. Oceanogr. 50, 799–809 (2005).
Google Scholar
López-Acosta, M. et al. Sponge contribution to the silicon cycle of a diatom-rich shallow bay. Limnol. Oceanogr. 67, 2431–2447 (2022).
Google Scholar
Maldonado, M. et al. Massive silicon utilization facilitated by a benthic-pelagic coupled feedback sustains deep-sea sponge aggregations. Limnol. Oceanogr. 66, 366–391 (2021).
Google Scholar
Wulff, J. L. Ecological interactions of marine sponges. Can. J. Zool. 84, 146–166 (2006).
Google Scholar
Pawlik, J. R., Loh, T.-L. & McMurray, S. E. A review of bottom-up vs. top-down control of sponges on Caribbean fore-reefs: What’s old, what’s new, and future directions. PeerJ 6, 4343 (2018).
Google Scholar
Dayton, P. K., Robilliard, G. A., Paine, R. T. & Dayton, L. B. Biological Accommodation in the Benthic Community at McMurdo Sound, Antartica. Ecol. Monogr. 44, 105–128 (1974).
Google Scholar
Meylan, A. Spongivory in hawksbill turtles: A diet of glass. Science 239, 393–395 (1988).
Google Scholar
Wulff, J. Sponge-feeding by Caribbean angelfishes, trunk-fishes, and filefishes. In Sponges in time and space 265–271 (A. A. Balkema, 1994).
Santos, C. P., Coutinho, A. B. & Hajdu, E. Spongivory by Eucidaris tribuloides from Salvador, Bahia (Echinodermata: Echinoidea). J. Mar. Biol. Ass. 82, 295–297 (2002).
Google Scholar
Chu, J. W. F. & Leys, S. P. The dorid nudibranchs Peltodoris lentiginosa and Archidoris odhneri as predators of glass sponges. Invertebr. Biol. 131, 75–81 (2012).
Google Scholar
Maschette, D. et al. Characteristics and implications of spongivory in the Knifejaw Oplegnathus woodwardi (Waite) in temperate mesophotic waters. J. Sea Res. 157, 101847 (2020).
Google Scholar
Knowlton, A. L. & Highsmith, R. C. Nudibranch-sponge feeding dynamics: Benefits of symbiont-containing sponge to Archidoris montereyensis (Cooper, 1862) and recovery of nudibranch feeding scars by Halichondria panicea (Pallas, 1766). J. Exp. Mar. Biol. Ecol. 327, 36–46 (2005).
Google Scholar
Bloom, S. A. Morphological correlations between dorid nudibranch predators and sponge prey. Veliger 18, 289–301 (1976).
Faulkner, D. & Ghiselin, M. Chemical defense and evolutionary ecology of dorid nudibranchs and some other opisthobranch gastropods. Mar. Ecol. Prog. Ser. 13, 295–301 (1983).
Google Scholar
Bloom, S. A. Specialization and noncompetitive resource partitioning among sponge-eating dorid nudibranchs. Oecologia 49, 305–315 (1981).
Google Scholar
Clark, K. B. Nudibranch life cycles in the Northwest Atlantic and their relationship to the ecology of fouling communities. Helgolander Wiss. Meeresunters 27, 28–69 (1975).
Google Scholar
Wulff, J. Regeneration of sponges in ecological context: Is regeneration an integral part of life history and morphological strategies?. Integr. Comp. Biol. 50, 494–505 (2010).
Google Scholar
Wu, Y.-C., Franzenburg, S., Ribes, M. & Pita, L. Wounding response in Porifera (sponges) activates ancestral signaling cascades involved in animal healing, regeneration, and cancer. Sci. Rep. 12, 1307 (2022).
Google Scholar
Turner, T. The marine sponge Hymeniacidon perlevis is a globally-distributed exotic species. Aquat. Invasions 15, 542–561 (2020).
Google Scholar
Ackers, R. G., Moss, D. & Picton, B. E. In Sponges of the British Isles (‘Sponge V’). vol. A Colour Guide and Working Document (Marine Conservation Society, 1992).
Lima, P. O. V. & Simone, L. R. L. Anatomical review of Doris verrucosa and redescription of Doris januarii (Gastropoda, Nudibranchia) based on comparative morphology. J. Mar. Biol. Ass. 95, 1203–1220 (2015).
Google Scholar
Avila, C. et al. Biosynthetic origin and anatomical distribution of the main secondary metabolites in the nudibranch mollusc Doris verrucosa. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 97, 363–368 (1990).
Google Scholar
Urgorri, V. & Besteiro, C. The feeding habits of the nudibranchs of Galicia. Iberus 4, 51–58 (1984).
Aminot, A. & Kerouel, R. In Dosage automatique des nutriments dans les eaux marines: Méthodes en flux continu. Méthodes d’analyse en milieu marin, Ed. Ifremer 188 (2007).
Hydes, D. J. & Liss, P. S. Fluorimetric method for the determination of low concentrations of dissolved aluminium in natural waters. Analyst 101, 922 (1976).
Google Scholar
López-Acosta, M., Leynaert, A., Coquille, V. & Maldonado, M. Silicon utilization by sponges: An assessment of seasonal changes. Mar. Ecol. Prog. Ser. 605, 111–123 (2018).
Google Scholar
Grall, J., Le-Loch, F., Guyonnet, B. & Riera, P. Community structure and food web based on stable isotopes (δ15N and δ13C) analysis of a North Eastern Atlantic maerl bed. J. Exp. Mar. Biol. Ecol. 338, 1–15 (2006).
Google Scholar
Cebrian, E., Uriz, M. J., Garrabou, J. & Ballesteros, E. Sponge Mass Mortalities in a warming Mediterranean sea: Are cyanobacteria-harboring species worse off?. PLoS ONE 6, e20211 (2011).
Google Scholar
McClintock, J. B. Investigation of the relationship between invertebrate predation and biochemical composition, energy content, spicule armament and toxicity of benthic sponges at McMurdo Sound, Antartica. Mar. Biol. 94, 479–487 (1987).
Google Scholar
Cockburn, T. C. & Reid, R. G. B. Digestive tract enzymes in two Aeolid nudibranchs (opisthobranchia: Gastropoda). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 65, 275–281 (1980).
Google Scholar
De Caralt, S., Uriz, M. & Wijffels, R. Grazing, differential size-class dynamics and survival of the Mediterranean sponge Corticium candelabrum. Mar. Ecol. Prog. Ser. 360, 97–106 (2008).
Google Scholar
Ragueneau, O., De-Blas-Varela, E., Tréguer, P., Quéguiner, B. & Del Amo, Y. Phytoplankton dynamics in relation to the biogeochemical cycle of silicon in a coastal ecosystem of western Europe. Mar. Ecol. Prog. Ser. 106, 157–172 (1994).
Google Scholar
Turon, X., Tarjuelo, I. & Uriz, M. J. Growth dynamics and mortality of the encrusting sponge Crambe crambe (Poecilosclerida) in contrasting habitats: Correlation with population structure and investment in defence: Growth and mortality of encrusting sponges. Funct. Ecol. 12, 631–639 (1998).
Google Scholar
Hoppe, W. F. Growth, regeneration and predation in three species of large coral reef sponges. Mar. Ecol. Prog. Ser. 50, 117–125 (1988).
Google Scholar
Ayling, A. L. Growth and regeneration rates in thinly encrusting Demospongiae from temperate waters. Biol. Bull. 165, 343–352 (1983).
Google Scholar
Fillinger, L., Janussen, D., Lundälv, T. & Richter, C. Rapid glass sponge expansion after climate-induced Antarctic ice shelf collapse. Curr. Biol. 23, 1330–1334 (2013).
Google Scholar
Dayton, P. K. et al. Benthic responses to an Antarctic regime shift: Food particle size and recruitment biology. Ecol. Appl. 29, 1 (2019).
Google Scholar
Guy, G. & Metaxas, A. Recruitment of deep-water corals and sponges in the Northwest Atlantic Ocean: Implications for habitat distribution and population connectivity. Mar. Biol. 169, 107 (2022).
Google Scholar
Beucher, C., Treguer, P., Corvaisier, R., Hapette, A. M. & Elskens, M. Production and dissolution of biosilica, and changing microphytoplankton dominance in the Bay of Brest (France). Mar. Ecol. Prog. Ser. 267, 57–69 (2004).
Google Scholar
López-Acosta, M., Leynaert, A. & Maldonado, M. Silicon consumption in two shallow-water sponges with contrasting biological features. Limnol. Oceanogr. 61, 2139–2150 (2016).
Google Scholar
Ellwood, M. J., Wille, M. & Maher, W. Glacial silicic acid concentrations in the Southern Ocean. Science 330, 1088–1091 (2010).
Google Scholar
Maldonado, M. et al. Cooperation between passive and active silicon transporters clarifies the ecophysiology and evolution of biosilicification in sponges. Sci. Adv. 6, eaba9322 (2020).
Google Scholar
Palumbi, S. R. Tactics of acclimation: morphological changes of sponges in an unpredictable environment. Science 225, 1478–1480 (1984).
Google Scholar
Broadribb, M., Bell, J. J. & Rovellini, A. Rapid acclimation in sponges: Seasonal variation in the organic content of two intertidal sponge species. J. Mar. Biol. Ass. 101, 983–989 (2021).
Google Scholar
Schönberg, C. H. L. & Barthel, D. Inorganic skeleton of the demosponge Halichondria panacea. Seasonality in spicule production in the Baltic Sea. Mar. Biol. 130, 133–140 (1997).
Google Scholar
Sheild, C. J. & Witman, J. D. The impact of Henricia sanguinolenta (O. F. Müller) (Echinodermata: Asteroidea) predation on the finger sponges, Isodictya spp.. J. Exp. Mar. Biol. Ecol. 166, 107–133 (1993).
Google Scholar
Lewis, J. R., Bowman, R. S., Kendall, M. A. & Williamson, P. Some geographical components in population dynamics: Possibilities and realities in some littoral species. Neth. J. Sea Res. 16, 18–28 (1982).
Google Scholar
Ashton, G. V. et al. Predator control of marine communities increases with temperature across 115 degrees of latitude. Science 376, 1215–1219 (2022).
Google Scholar
Knowlton, A. & Highsmith, R. Convergence in the time-space continuum: A predator-prey interaction. Mar. Ecol. Prog. Ser. 197, 285–291 (2000).
Google Scholar
Source: Ecology - nature.com