Pachauri, R. K. et al. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2014).
Fu, F. X., Warner, M. E., Zhang, Y., Feng, Y. & Hutchins, D. A. Effects of Increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (cyanobacteria) 1. J. Phycol. 43, 485–496 (2007).
Schippers, P., Lürling, M. & Scheffer, M. Increase of atmospheric CO2 promotes phytoplankton productivity. Ecol. Lett. 7, 446–451 (2004).
Raven, J. A., Gobler, C. J. & Hansen, P. J. Dynamic CO2 and pH levels in coastal, estuarine, and inland waters: Theoretical and observed effects on harmful algal blooms. Harmful Algae 91, 101594 (2020).
Google Scholar
Gobler, C. J. et al. Ocean warming since 1982 has expanded the niche of toxic algal blooms in the North Atlantic and North Pacific oceans. Proc. Natl Acad. Sci. 114, 4975–4980 (2017).
Google Scholar
Rost, B., Richter, K. U., Riebesell, U. & Hansen, P. J. Inorganic carbon acquisition in red tide dinoflagellates. Plant, Cell Environ. I 29, 810–822 (2006).
Google Scholar
Honjo, T. Harmful Red Tides of Heterosigma akashiwo. NOAA Technical Report NMFS. 111, 27–32 (1992).
Rensel, J. J. & Haigh, N. Fraser river sockeye salmon marine survival decline and harmful blooms of Heterosigma akashiwo. Harmful Algae 10, 98–115 (2010).
Herndon, J. & Cochlan, W. P. Nitrogen utilization by the raphidophyte Heterosigma akashiwo: growth and uptake kinetics in laboratory cultures. Harmful Algae 6, 260–270 (2007).
Haley, S. T., Alexander, H., Juhl, A. R. & Dyhrman, S. T. Transcriptional response of the harmful raphidophyte Heterosigma akashiwo to nitrate and phosphate stress. Harmful Algae 68, 258–270 (2017).
Google Scholar
Wang, Z.-h, Liang, Y. & Kang, W. Utilization of dissolved organic phosphorus by different groups of phytoplankton taxa. Harmful Algae 12, 113–118 (2011).
Google Scholar
Ji, N. et al. Metatranscriptome analysis reveals environmental and diel regulation of a Heterosigma akashiwo (raphidophyceae) bloom. Environ. Microbiol. 20, 1078–1094 (2018).
Google Scholar
Zhang, H. et al. Functional differences in the blooming phytoplankton Heterosigma akashiwo and Prorocentrum donghaiense revealed by comparative metaproteomics. Appl. Environ. Microbiol. 85, e01425–01419 (2019).
Google Scholar
Redfield, A. C. The biological control of chemical factors in the environment. Am. Scientist 46, 230A–221 (1958).
Liefer, J. D. et al. The macromolecular basis of phytoplankton C: N: P under nitrogen starvation. Front. Microbiol. 10, 763 (2019).
Matsumoto, K., Tanioka, T. & Rickaby, R. Linkages between dynamic phytoplankton C: N: P and the ocean carbon cycle under climate change. Oceanography 33, 44–52 (2020).
Thrane, J. E., Hessen, D. O. & Andersen, T. Plasticity in algal stoichiometry: Experimental evidence of a temperature‐induced shift in optimal supply N: P ratio. Limnol. Oceanogr. 62, 1346–1354 (2017).
Google Scholar
Toseland, A. et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat. Clim. Change 3, 979–984 (2013).
Google Scholar
Mittler, R., Finka, A. & Goloubinoff, P. How do plants feel the heat? Trends Biochem. Sci. 37, 118–125 (2012).
Google Scholar
Dingman, J. E. & Lawrence, J. E. Heat-stress-induced programmed cell death in Heterosigma akashiwo (Raphidophyceae). Harmful Algae 16, 108–116 (2012).
Whitten, S. T., García-Moreno E, B. & Hilser, V. J. Local conformational fluctuations can modulate the coupling between proton binding and global structural transitions in proteins. Proc. Natl Acad. Sci. 102, 4282–4287 (2005).
Google Scholar
Casey, J. R., Grinstein, S. & Orlowski, J. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 11, 50–61 (2010).
Google Scholar
Kim, H., Spivack, A. J. & Menden-Deuer, S. pH alters the swimming behaviors of the raphidophyte Heterosigma akashiwo: implications for bloom formation in an acidified ocean. Harmful Algae 26, 1–11 (2013).
Google Scholar
Hennon, G. M., Williamson, O. M., Limón, M. D. H., Haley, S. T. & Dyhrman, S. T. Non-linear physiology and gene expression responses of harmful alga Heterosigma akashiwo to rising CO2. Protist 170, 38–51 (2019).
Google Scholar
Xu, H., Jaynes, J. & Ding, X. Combining two-level and three-level orthogonal arrays for factor screening and response surface exploration. Statistica Sin. 24, 269–289 (2014).
Boyd, P. W. & Ellwood, M. J. The biogeochemical cycle of iron in the ocean. Nat. Geosci. 3, 675–682 (2010).
Google Scholar
Sterner, R. W. & Elser, J. J. in Ecological Stoichiometry (Princeton university press, 2002).
Liu, H. C., Liao, H. T. & Charng, Y. Y. The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell Environ. 34, 738–751 (2011).
Google Scholar
Geider, R. J. & La Roche, J. J. Redfield revisited: variability of C [ratio] N [ratio] P in marine microalgae and its biochemical basis. Eur. J. Phycol. 37, 1–17 (2002).
Loladze, I. & Elser, J. J. The origins of the Redfield nitrogen‐to‐phosphorus ratio are in a homoeostatic protein‐to‐rRNA ratio. Ecol. Lett. 14, 244–250 (2011).
Hennige, S. J., Coyne, K. J., MacIntyre, H., Liefer, J. & Warner, M. E. The photobiology of Heterosigma akashiwo. Photoacclimation, diurnal periodicity, and its ability to rapidly exploit exposure to high light. J. Phycol. 49, 349–360 (2013).
Google Scholar
Collier, J. L. & Grossman, A. A small polypeptide triggers complete degradation of light‐harvesting phycobiliproteins in nutrient‐deprived cyanobacteria. EMBO J. 13, 1039–1047 (1994).
Google Scholar
Gordillo, F. J., Jimenez, C., Figueroa, F. L. & Niell, F. X. Influence of elevated CO2 and nitrogen supply on the carbon assimilation performance and cell composition of the unicellular alga Dunaliella viridis. Physiologia Plant. 119, 513–518 (2003).
Google Scholar
Satoh, E., Watanabe, M. M. & Fujii, T. Photoperiodic regulation of cell division and chloroplast replication in Heterosigma akashiwo. Plant Cell Physiol. 28, 1093–1099 (1987).
Ashworth, J. et al. Genome-wide diel growth state transitions in the diatom Thalassiosira pseudonana. Proc. Natl Acad. Sci. 110, 7518–7523 (2013).
Google Scholar
Thangaraj, S. & Sun, J. J. E. M. Transcriptomic reprogramming of the oceanic diatom Skeletonema dohrnii under warming ocean and acidification. Environ. Microbiol. 23, 980–995 (2021).
Google Scholar
Nakajima, K., Tanaka, A. & Matsuda, Y. SLC4 family transporters in a marine diatom directly pump bicarbonate from seawater. Proc. Natl Acad. Sci. 110, 1767–1772 (2013).
Google Scholar
Kranz, S. A. et al. Low temperature reduces the energetic requirement for the CO2 concentrating mechanism in diatoms. N. Phytologist 205, 192–201 (2015).
Google Scholar
Ralston, A. & Shaw, K. Gene expression regulates cell differentiation. Nat. Educ. 1, 127–131 (2008).
Lobo, I. Environmental influences on gene expression. Nat. Educ. 1, 39 (2008).
Suzuki, N. et al. Respiratory burst oxidases: the engines of ROS signaling. Curr. Opin. Plant Biol. 14, 691–699 (2011).
Google Scholar
Saidi, Y., Finka, A. & Goloubinoff, P. Heat perception and signalling in plants: a tortuous path to thermotolerance. N. Phytologist 190, 556–565 (2011).
Google Scholar
Saidi, Y. et al. The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. Plant Cell 21, 2829–2843 (2009).
Google Scholar
Zhang, W. et al. Molecular and genetic evidence for the key role of AtCaM3 in heat-shock signal transduction in Arabidopsis. Plant Physiol. 149, 1773–1784 (2009).
Google Scholar
Li, S. et al. Functional characterization of Arabidopsis thaliana WRKY39 in heat stress. Mol. Cells 29, 475–483 (2010).
Google Scholar
Sangwan, V., Örvar, B. L., Beyerly, J., Hirt, H. & Dhindsa, R. S. Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. Plant J. 31, 629–638 (2002).
Google Scholar
Reddy, A. S., Ali, G. S., Celesnik, H. & Day, I. S. Coping with stresses: roles of calcium-and calcium/calmodulin-regulated gene expression. Plant Cell 23, 2010–2032 (2011).
Google Scholar
Meiri, D. & Breiman, A. J. Arabidopsis ROF1 (FKBP62) modulates thermotolerance by interacting with HSP90. 1 and affecting the accumulation of HsfA2‐regulated sHSPs. Plant J. 59, 387–399 (2009).
Google Scholar
Mishkind, M., Vermeer, J. E., Darwish, E. & Munnik, T. J. Heat stress activates phospholipase D and triggers PIP2 accumulation at the plasma membrane and nucleus. Plant J. 60, 10–21 (2009).
Google Scholar
Zheng, S. Z. et al. Phosphoinositide‐specific phospholipase C9 is involved in the thermotolerance of Arabidopsis. Plant J. 69, 689–700 (2012).
Google Scholar
Pincus, D. et al. BiP binding to the ER-stress sensor Ire1 tunes the homeostatic behavior of the unfolded protein response. PLoS Biol. 8, e1000415 (2010).
Sugio, A., Dreos, R., Aparicio, F. & Maule, A. J. The cytosolic protein response as a subcomponent of the wider heat shock response in Arabidopsis. Plant Cell 21, 642–654 (2009).
Google Scholar
Vasseur, F., Pantin, F. & Vile, D. J. P. Cell & Environment. Changes in light intensity reveal a major role for carbon balance in Arabidopsis responses to high temperature. Plant Cell Environ. 34, 1563–1576 (2011).
Google Scholar
Paroutis, P., Touret, N. & Grinstein, S. The pH of the secretory pathway: measurement, determinants, and regulation. J. Physiol. 19, 207–215 (2004).
Google Scholar
Forgac, M. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat. Rev. Mol. Cell Biol. 8, 917–929 (2007).
Google Scholar
Cipriano, D. J. et al. Structure and regulation of the vacuolar ATPases. Biochim. et. Biophys. Acta -Bioenerg. 1777, 599–604 (2008).
Google Scholar
Abad, M. F. C., Di Benedetto, G., Magalhães, P. J., Filippin, L. & Pozzan, T. Mitochondrial pH monitored by a new engineered green fluorescent protein mutant. J. Biol. Chem. 279, 11521–11529 (2004).
Google Scholar
McCORMACK, J. G., Halestrap, A. P. & Denton, R. M. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol. Rev. 70, 391–425 (1990).
Google Scholar
Garlid, K. D., Sun, X., Paucek, P. & Woldegiorgis, G. in Methods in enzymology Vol. 260 331–348 (Elsevier, 1995).
Yamada, E. W. & Huzel, N. J. J. B. Calcium-binding ATPase inhibitor protein of bovine heart mitochondria. Role in ATP synthesis and effect of calcium. Biochemistry 28, 9714–9718 (1989).
Google Scholar
Moreno-Sánchez, R. Inhibition of oxidative phosphorylation by a Ca2+-induced diminution of the adenine nucleotide translocator. Biochim. et. Biophys. Acta -Bioenerg. 724, 278–285 (1983).
Matsuyama, S., Llopis, J., Deveraux, Q. L., Tsien, R. Y. & Reed, J. Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat. Cell Biol. 2, 318–325 (2000).
Google Scholar
Sunda, W. G., Price, N. M. & Morel, F. M. Trace metal ion buffers and their use in culture studies. Algal Cultur. Tech. 4, 35–63 (2005).
Sun, J. et al. Effects of changing pCO2 and phosphate availability on domoic acid production and physiology of the marine harmful bloom diatom Pseudo‐nitzschia multiseries. Limnol. Oceanogr. 56, 829–840 (2011).
Google Scholar
Pierrot, D., Lewis, E. & Wallace, D. J. MS Excel Program Developed for CO2 System Calculations ORNL/CDIAC‐105 (US Dept. of Energy, Oak Ridge, TN, 2006).
Wilbur, K. M. & Anderson, N. G. Electrometric and colorimetric determination of carbonic anhydrase. J. Biol. Chem. 176, 147–154 (1948).
Google Scholar
Solórzano, L. & Sharp, J. H. Determination of total dissolved phosphorus and particulate phosphorus in natural waters 1. Limnol. Oceanogr. 25, 754–758 (1980).
Myklestad, S. M., Skånøy, E. & Hestmann, S. J. Sensitive and rapid method for analysis of dissolved mono-and polysaccharides in seawater. Mar. Chem. 56, 279–286 (1997).
Google Scholar
Pakulski, J. D. & Benner, R. J. An improved method for the hydrolysis and MBTH analysis of dissolved and particulate carbohydrates in seawater. Mar. Chem. 40, 143–160 (1992).
Google Scholar
Folch, J. & Lees, M. & Sloane Stanley, G. H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509 (1957).
Google Scholar
Pande, S., Khan, R. P. & Venkitasubramanian, T. Microdetermination of lipids and serum total fatty acids. Anal. Biochem. 6, 415–423 (1963).
Google Scholar
Lowry, O., Rosebrough, N., Farr, A. L. & Randall, R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951).
Google Scholar
Berdalet, E., Roldán, C., Olivar, M. P. & Lysnes, K. Quantifying RNA and DNA in planktonic organisms with SYBR Green II and nucleases. Part A. Optimisation of the assay. Sci. Mar. 69, 1–16 (2005).
Google Scholar
Chomoczynski, P. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloro-form extraction. Anal. Biochem. 162, 156–159 (1987).
Sañudo-Wilhelmy, S. A. et al. The impact of surface-adsorbed phosphorus on phytoplankton Redfield stoichiometry. Phycol. Res. 432, 897–901 (2004).
Dyhrman, S. T. Nutrients and their acquisition: phosphorus physiology in microalgae. Physiol. Microalgae 155–183 (2016).
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
Google Scholar
Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543–548 (2018).
Google Scholar
Pruitt, K. D., Tatusova, T. & Maglott, D. R. J. N. A. R. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 35, D61–D65 (2007).
Google Scholar
Kanehisa, M. & Goto, S. J. N. A. R. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
Google Scholar
Mitchell, A. L. et al. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 47, D351–D360 (2019).
Google Scholar
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).
Wang, L., Feng, Z., Wang, X., Wang, X. & Zhang, X. J. B. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26, 136–138 (2010).
Source: Ecology - nature.com