in

Ontogenetic changes in the body structure of the Arctic fish Leptoclinus maculatus

  • Meyer Ottesen, C. A. et al. Early life history of the daubed shanny (Teleostei: Leptoclinus maculatus) in Svalbard waters. Mar. Biodivers. 41(3), 383–394 (2011).

    Article 

    Google Scholar 

  • Murzina, S.A. Role of Lipids and Their Fatty Acid Components in Ecological and Biochemical Adaptations of Fish of the Northern Seas. Dr. Sci. Thesis (IPEE RAS, 2019).

  • Murzina, S. A. et al. Tiny but fatty: Lipids and fatty acids in the Daubed Shanny (Leptoclinus maculatus), a small fish in Svalbard waters. Biomolecules 10, 368 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Falk-Petersen, S., Falk-Petersen, I. B. & Sargent, J. R. Structure and function of an unusal lipid storage organ in the Arctic fish Lumpenus maculatus Fries. Sarsia 71(1), 1–6 (1986).

    Article 
    CAS 

    Google Scholar 

  • Murzina S.A. The Role of Lipids and Their Fatty Acid Components in the Biochemical Adaptations of the Daubed Shanny Leptoclinus maculatus F. of the Northwestern Coast of Svalbard. PhD Thesis 184 (IB KarRC RAS, 2010)

  • Pekkoeva, S. N. et al. Ecological role of lipids and fatty acids in the early postembryonic development of daubed shanny, Leptoclinus maculatus (Fries, 1838) from Kongsfjorden, West Spitsbergen in winter. Rus. J. Ecol. 48(3), 240–244 (2017).

    Article 
    CAS 

    Google Scholar 

  • Hovde, S. C., Albert, O. T. & Nilssen, E. M. Spatial, seasonal and ontogenetic variation in diet of Northeast Arctic Greenland halibut (Reinhardtius hippoglossoides). ICES J. Mar. Sci. 59, 421–437 (2002).

    Article 

    Google Scholar 

  • Labansen, A. L., Lydersen, C., Haug, T. & Kovacs, K. M. Spring diet of ringed seals (Phoca hispida) from northwestern Spitsbergen. Norway. ICES J. Mar. Sci. 64, 1246–1256 (2007).

    Article 

    Google Scholar 

  • Moser, H. G. Morphological and functional aspect of marine fish larvae. in Marine Fish Larvae—Morphology, Ecology, and Relation to Fisheries (ed. Lasker, R.). 89–131. (University of Washington Press, 1981).

  • Moser, H. G. et al. Ontogeny and systematics of fishes. in American Society Ichthyologists Herpetologists Special Publication. Vol. 760 (Allen Press, 1984).

  • Webb, J. F. Larvae in fish development and evolution in The Origin and Evolution of Larval Forms. 109–158 (Academic Press, 1999).

  • Govoni, J. J., Olney, J. E., Markle, D. F. & Curtsinger, W. R. Observations on structure and evaluation of possible functions of the vexillum in larval Carapidae (Ophidiiformes). Bull. Mar. Sci. 34, 60–70 (1984).

    Google Scholar 

  • Pekkoeva, S. N. et al. Fatty acid composition of the postlarval daubed shanny (Leptoclinus maculatus) during the polar night. Polar Biol. 43, 657–664 (2020).

    Article 

    Google Scholar 

  • Pekkoeva, S. N. et al. Ecological groups of the Daubed Shanny Leptoclinus maculatus (Fries, 1838), an Arcto-boreal species, regarding growth and early development. Rus. J. Ecol. 49(3), 253–259 (2018).

    Article 

    Google Scholar 

  • Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9(7), 676–682 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Version 12/2021. (R Foundation for Statistical Computing, 2020.)

  • Kabakoff, R. R in Action: Data Analysis and Graphics with R 588 (DMK Press, 2014).

    Google Scholar 

  • Murzina, S. A. et al. Oogenesis and lipids in gonad and liver of daubed shanny (Leptoclinus maculatus) females from Svalbard waters. Fish Physiol. Biochem. 38(5), 1393–1407 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kondakova, E. A., Efremov, V. I. & Nazarov, V. A. Structure of the yolk syncytial layer in Teleostei and analogous structures in animals of the meroblastic type of development. Biol. Bull. 43(3), 208–215 (2016).

    Article 

    Google Scholar 

  • Webster, M., Witkin, K. L. & Cohen-Fix, O. Sizing up the nucleus: Nuclear shape, size and nuclear-envelope assembly. J. Cell Sci. 122(10), 1477–1486 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jevtić, P., Edens, L. J., Vuković, L. D. & Levy, D. L. Sizing and shaping the nucleus: mechanisms and significance. Curr. Opin. Cell Biol. 28, 16–27 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Kondakova, E. A., Efremov, V. I. & Kozin, V. V. Common and specific features of organization of the yolk syncytial layer of teleostei as exemplified in Gasterosteus aculeatus L. Biol. Bull. 46(1), 26–32 (2019).

    Article 

    Google Scholar 

  • Enders, A. C. Reasons for diversity of placental structure. Placenta 30, 15–18 (2009).

    Article 

    Google Scholar 

  • Carvalho, L. & Heisenberg, C. P. The yolk syncytial layer in early zebrafish development. Trends Cell Biol. 20(10), 586–592 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jaroszewska, M. & Dabrowski, K. Utilization of yolk: transition from endogenous to exogenous nutrition in fish. in Larval Fish Nutrition. 183–218 (2011).

  • Kondakova, E. A., Efremov, V. I. & Bogdanova, V. A. Structure of the yolk syncytial layer in the larvae of whitefishes: A histological study. Russ. J. Dev. Biol. 48(3), 176–184 (2017).

    Article 
    CAS 

    Google Scholar 

  • Kondakova, E. A. & Bogdanova, V. A. The fate of the yolk syncytial layer during postembryonic development of Stenodus leucichthys nelma. Ann. Zool. Fenn. 58(4–6), 155–160 (2021).

    Google Scholar 

  • Chanet, B. & Meunier, F. J. The anatomy of the thyroid gland among “fishes”: phylogenetic implications for the Vertebrata. Cybium 38(2), 89–116 (2014).

    Google Scholar 

  • Zenzerov, V.S. Features of the Structure and Functioning of the Thyroid Gland of Fish in the Barents Sea. Doctor of Science Thesis. Vol. 42 (PetrGU, 2007).

  • Chalde, T. & Miranda, L. A. Pituitary–thyroid axis development during the larval–juvenile transition in the pejerrey Odontesthes bonariensis. J. Fish Biol. 91(3), 818–834 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Otero, A. P., Rodrigues, R. V., Sampaio, L. A., Romano, L. A. & Tesser, M. B. Thyroid gland development in Rachycentron canadum during early life stages. An. Acad. Bras. Ciênc. 86(3), 1507–1516 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Nilsson, M. & Fagman, H. Development of the thyroid gland. Development 144(12), 2123–2140 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Eales, J. G. & Brown, S. B. Measurement and regulation of thyroidal status in teleost fish. Rev. Fish Biol. Fish. 3(4), 299–347 (1993).

    Article 

    Google Scholar 

  • Raine, J. C. & Leatherland, J. F. Morphological and functional development of the thyroid tissue in rainbow trout (Oncorhynchus mykiss) embryos. Cell Tissue Res. 301(2), 235–244 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • de Jesus, E. G., Inui, Y. & Hirano, T. Cortisol enhances the stimulating action of thyroid hormones on dorsal fin-ray resorption of flounder larvae in vitro. Gen. Comp. Endocrinol. 79(2), 167–173 (1990).

    Article 
    PubMed 

    Google Scholar 

  • Inui, Y. & Miwa, S. Metamorphosis of flatfish (Pleuronectiformes). in Metamorphosis in Fish. 107–153 (Taylor & Francis, 2012)

  • Nemova, N. N., Rendakov, N. L., Pekkoeva, S. N., Nikerova, K. M. & Murzina, S. A. Dynamics of estradiol level during metamorphosis in the Daubed Shanny (Leptoclinus maculatus, Fries, 1838) from Spitsbergen Island. Dokl. Biol. Sci. 482, 188–190 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Icardo, J. M. The teleost heart: A morphological approach in Ontogeny and Phylogeny of the Vertebrate Heart. 35–53 (Springer, 2012).

  • Icardo, J. M. Heart morphology and anatomy. in Fish Physiology. 1–54 (Academic Press, 2017).

  • Hu, N., Yost, H. J. & Clark, E. B. Cardiac morphology and blood pressure in the adult zebrafish. Anatomic. Rec. 264(1), 1–12 (2001).

    Article 
    CAS 

    Google Scholar 

  • Icardo, J. M., Colvee, E., Cerra, M. C. & Tota, B. The bulbus arteriosus of stenothermal and temperate teleosts: A morphological approach. J. Fish Biol. 57, 121–135 (2000).

    Article 

    Google Scholar 

  • Benjamin, M., Norman, D., Santer, R. M. & Scarborough, D. Histological, histochemical and ultrastructural studies on the bulbus arteriosus of the sticklebacks, Gasterosteus aculeatus and Pungitius pungitius (Pisces: Teleostei). J. Zool. 200(3), 325–346 (1983).

    Article 

    Google Scholar 

  • Braun, M. H., Brill, R. W., Gosline, J. M. & Jones, D. R. Form and function of the bulbus arteriosus in yellowfin tuna (Thunnus albacares), bigeye tuna (Thunnus obesus) and blue marlin (Makaira nigricans): static properties. J. Exp. Biol. 206(19), 3311–3326 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Icardo, J. M. Conus arteriosus of the teleost heart: Dismissed, but not missed. Anat. Rec. Part A Discov. Mol. Cell. Evolut. Biol. 288(8), 900–908 (2006).

    Article 

    Google Scholar 

  • Tota, B. Vascular and metabolic zonation in the ventricular myocardium of mammals and fishes. Comp. Biochem. Physiol. A Physiol. 76(3), 423–437 (1983).

    Article 
    CAS 

    Google Scholar 

  • Gardinal, M. V. B. et al. Myocardium arrangement and coronary vessel distribution in the ventricle of three neotropical freshwater teleosts. Zool. Sci. 35(4), 360–367 (2018).

    Article 

    Google Scholar 

  • BuzeteGardinal, M. V. et al. Heart structure in the Amazonian teleost Arapaima gigas (Osteoglossiformes, Arapaimidae). J. Anat. 234(3), 327–337 (2019).

    Article 
    CAS 

    Google Scholar 

  • Icardo, J. M. & Colvee, E. The atrioventricular region of the teleost heart. A distinct heart segment. Anatomic. Rec. Adv. Integr. Anat. Evolut. Biol. 294(2), 236–242 (2011).

    Article 

    Google Scholar 

  • Kock, K. H. Antarctic icefishes (Channichthyidae): A unique family of fishes. A review, Part I. Polar Biol. 28, 862–895 (2005).

    Article 

    Google Scholar 

  • Cocca, E. et al. Genomic remnants of alpha-globin genes in the hemoglobinless antarctic icefishes. Proc. Natl. Acad. Sci. 92(6), 1817–1821 (1995).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • di Prisco, G., Cocca, E., Parker, S. K. & Detrich, H. W. III. Tracking the evolutionary loss of hemoglobin expression by the white-blooded Antarctic icefishes. Gene 295(2), 185–191 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Sidell, B. D. & O’Brien, K. M. When bad things happen to good fish: The loss of hemoglobin and myoglobin expression in Antarctic icefishes. J. Exp. Biol. 209(10), 1791–1802 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kaufman, Z. S. Adaptation of aquatic organisms to existence in high latitudes. Proc. Karelian Sci. Center Russ. Acad. Sci. 1, 3–19 (2015).

    Google Scholar 

  • Jakubowski, M. Dimensions of respiratory surfaces of the gills and skin in the Antarctic white-blooded fish, Chaenocephalus aceratus Lönnberg (Chaenichthyidae). Z. Mikrosk.-Anat. Forschung. 96(1), 145–156 (1982).

    CAS 

    Google Scholar 

  • Graham, J. B. Air-breathing fishes: The biology, diversity, and natural history of air-breathing fishes. in Encyclopedia of Fish Physiology. 1861–1874 (Elsevier, 2011).

  • Maniatis, G. M. & Ingram, V. M. Erythropoiesis during amphibian metamorphosis: I. Site of maturation of erythrocytes in Rana catesbeiana. J. Cell Biol. 49(2), 372–379 (1971).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maruyama, K., Yasumasu, S. & Iuchi, I. Characterization and expression of embryonic and adult globins of the teleost Oryzias latipes (medaka). J. Biochem. 132(4), 581–589 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brownlie, A. et al. Characterization of embryonic globin genes of the zebrafish. Dev. Biol. 255(1), 48–61 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Feng, J. et al. Channel catfish hemoglobin genes: Identification, phylogenetic and syntenic analysis, and specific induction in response to heat stress. Comp. Biochem. Physiol. D Genom. Proteom. 9, 11–22 (2014).

    CAS 

    Google Scholar 

  • Miwa, S. & Inui, Y. Thyroid hormone stimulates the shift of erythrocyte populations during metamorphosis of the flounder. J. Exp. Zool. 259(2), 222–228 (1991).

    Article 
    CAS 

    Google Scholar 

  • Hansen, A., Reutter, K. & Zeiske, E. Taste bud development in the zebrafish, Danio rerio. Dev. Dyn. 223(4), 483–496 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Wang, C. A. et al. The development of pharyngeal taste buds in Hucho taimen (Pallas, 1773) larvae. Iran. J. Fish. Sci. 15(1), 426–435 (2016).

    ADS 

    Google Scholar 

  • Fraser, G. J., Graham, A. & Smith, M. M. Conserved deployment of genes during odontogenesis across osteichthyans. Proc. R. Soc. Lond. Ser. B Biol. Sci. 271(1555), 2311–2317 (2004).

    Article 

    Google Scholar 

  • Zambonino-Infante, J. L. et al. Ontogeny and physiology of the digestive system of marine fish larvae. in Feeding and Digestive Functions of Fishes. 281–348 (Science Publishers, 2008)

  • Rønnestad, I. et al. Feeding behaviour and digestive physiology in larval fish: Current knowledge, and gaps and bottlenecks in research. Rev. Aquac. 5, S59–S98 (2013).

    Article 

    Google Scholar 

  • Wallace, R. A. & Selman, K. Physiological aspects of oogenesis in two species of stickelebacks, Gasterosteus aculeatus (L.) and Apeltes quadracus (Mitchill). J. Fish Biol. 14, 551–564 (1979).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Local environment drives rapid shifts in composition and phylogenetic clustering of seagrass microbiomes

    3 Questions: Antje Danielson on energy education and its role in climate action