Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, et al. Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol. 2019;17:569–86.
Google Scholar
Myers SS, Smith MR, Guth S, Golden CD, Vaitla B, Mueller ND, et al. Climate Change and Global Food Systems: Potential Impacts on Food Security and Undernutrition. Annu Rev Pub Health. 2017;38:259–77.
Google Scholar
Brown AR, Lilley M, Shutler J, Lowe C, Artioli Y, Torres R, et al. Assessing risks and mitigating impacts of harmful algal blooms on mariculture and marine fisheries. Rev Aquac. 2020;12:1663–88.
Bates SS, Hubbard KA, Lundholm N, Montresor M, Leaw CP. Pseudo-nitzschia, Nitzschia, and domoic acid: New research since 2011. Harmful Algae. 2018;79:3–43.
Google Scholar
Silver MW, Bargu S, Coale SL. Toxic diatoms and domoic acid in natural and iron enriched waters of the oceanic pacific. Proc Natl Acad Sci. 2010;107:20762–67.
Google Scholar
Trick CG, Bill BD, Cochlan WP, Wells ML, Trainer VL, Pickell LD. Iron enrichment stimulates toxic diatom production in high-nitrate, low-chlorophyll areas. Proc Natl Acad Sci. 2010;107:5887–92.
Google Scholar
Hallegraeff G, Enevoldsen H, Zingone A. Global harmful algal bloom status reporting. Harmful Algae. 2021;102:101992.
Google Scholar
McKibben SM, Peterson W, Wood AM, Trainer VL, Hunter M, White AE. Climatic regulation of the neurotoxin domoic acid. Proc Natl Acad Sci. 2017;114:239–44.
Google Scholar
Clark S, Hubbard KA, Ralston DK, McGillicuddy DJ, Stocke C, Alexander MA, et al. Projected effects of climate change on Pseudo-nitzschia bloom dynamics in the Gulf of Maine. J Mar Syst. 2022;230:103737.
Google Scholar
Trainer VL, Kudela RM, Hunter MV, Adams NG, McCabe RM. Climate extreme seeds a new domoic ccid hotspot on the US West Coast. Front Clim. 2020;2:1–11.
Google Scholar
Hinder SL, Hays GC, Edwards M, Roberts EC, Walne AW, Gravenor MB. Changes in marine dinoflagellate and diatom abundance under climate change. Nat Clim Change. 2012;2:271–75.
Google Scholar
Sun J, Hutchins DA, Feng Y, Seubert EL, Caron DA, Fu FX. Effects of changing pCO2 and phosphate availability on domoic acid production and physiology of the marine harmful bloom diatom Pseudo-nitzschia multiseries. Limnol Oceanogr. 2011;56:829–40.
Google Scholar
Zhu Z, Qu P, Fu F, Tennenbaum N, Tatters AO, Hutchins DA. Understanding the blob bloom: warming increases toxicity and abundance of the harmful bloom diatom Pseudo-nitzschia in California coastal waters. Harmful Algae. 2017;67:36–43.
Google Scholar
Radan RL, Cochlan WP. Differential toxin response of Pseudo-nitzschia multiseries as a function of nitrogen speciation in batch and continuous cultures, and during a natural assemblage experiment. Harmful Algae. 2018;73:12–29.
Google Scholar
Wingert CJ, Cochlan WP. Effects of ocean acidification on the growth, photosynthetic performance, and domoic acid production of the diatom Pseudo-nitzschia australis from the California Current System. Harmful Algae. 2021;107:102030.
Google Scholar
Auro ME, Cochlan WP. Nitrogen utilization and toxin production by two diatoms of the Pseudo-nitzschia pseudodelicatissima complex: P. cuspidate and P. fryxelliana. J Phycol. 2013;49:156–69.
Google Scholar
Lundholm N, Clarke A, Ellegaard M. A 100-year record of changing Pseudo-nitzschia species in a sill-fjord in Denmark related to nitrogen loading and temperature. Harmful Algae. 2010;9:449–57.
Google Scholar
Ryan JP, Kudela RM, Birch JM, Blum M, Bower HA, Chavez FP, et al. Causality of an extreme harmful algal bloom in Monterey Bay, California, during the 2014–2016 northeast Pacific warm anomaly. Geophys Res Lett. 2017;44:5571–79.
Google Scholar
McCabe RM, Hickey BM, Kudela RM, Lefebvre KA, Adams NG, Bill BD, et al. An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophys Res Lett. 2016;43:10,366–76.
Google Scholar
Tatters AO, Fu FX, Hutchins DA. High CO2 and silicate limitation synergistically increase the toxicity of Pseudo-nitzschia fraudulenta. PLoS One. 2012;7:e32116.
Google Scholar
Lundholm N, Hansen PJ, Kotaki Y. Effect of pH on growth and domoic acid production by potentially toxic diatoms of the genera Pseudo-nitzschia and Nitzschia. Mar Ecol Prog Ser. 2004;273:1–15.
Google Scholar
Trimborn S, Lundholm N, Thoms S, Richter KW, Krock B, Hansen P, et al. Inorganic carbon acquisition in potentially toxic and non-toxic diatoms: the effect of pH-induced changes in seawater carbonate chemistry. Physiol Plant. 2008;133:92–105.
Google Scholar
Brunson JK, McKinnie SMK, Chekan JR, McCrow JP, Miles ZD, Bertrand EM, et al. Biosynthesis of the neurotoxin domoic acid in a bloom-forming diatom. Science. 2018;361:1356–58.
Google Scholar
Boissonneault KR, Henningsen BM, Bates SS, Robertson DL, Milton S, Pelletier J, et al. Gene expression studies for the analysis of domoic acid production in the marine diatom Pseudo-nitzschia multiseries. BMC Mole Biol. 2013;14:1–19.
Pierrot DE, Lewis E, Wallace DWR MS Excel program developed for CO2 system calculations. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of. Energy, Oak Ridge, TN. 2006; Retrieved from https://doi.org/10.3334/CDIAC/otg.CO2SYS_XLS_CDIAC105a.
Brzezinski MA, Nelson DM. The annual silica cycle in the Sargasso Sea near Bermuda. Deep-Sea Res Pt I Oceanogr Res Papers. 1995;42:1215–37.
Google Scholar
Schlüter L, Lohbeck KT, Gutowska MA, Gröger JP, Riebesell U, Reusch TBH. Adaptation of a globally important coccolithophore to ocean warming and acidification. Nat Clim Change. 2014;4:1024–30.
Google Scholar
Schaum CE, Barton S, Bestion E, Buckling A, Garcia-Carreras B, Lopez P, et al. Adaptation of phytoplankton to a decade of experimental warming linked to increased photosynthesis. Nat Ecol Evol. 2017;1:0094.
Google Scholar
Wang Z, Maucher-Fuquay J, Fire SE, Mikulski CM, Haynes B, Doucette GJ, et al. Optimization of solid-phase extraction and liquid chromatography–tandem mass spectrometry for the determination of domoic acid in seawater, phytoplankton, and mammalian fluids and tissues. Anal Chim Acta. 2012;715:71–9.
Google Scholar
Brandenburg KM, Velthuis M, Van de Waal DB. Meta-analysis reveals enhanced growth of marine harmful algae from temperate regions with warming and elevated CO2 levels. Glob Change Biol. 2019;25:2607–18.
Google Scholar
Wohlrab S, John U, Klemm K, Rberlein T, Grivogiannis AMF, Krock B, et al. Ocean acidification increases domoic acid contents during a spring to summer succession of coastal phytoplankton. Harmful Algae. 2020;92:101697.
Google Scholar
Zhong J, Guo Y, Liang Z, Huang Q, Lu H, Pan J, et al. Adaptation of a marine diatom to ocean acidification and warming reveals constraints and trade-offs. Sci Total Environ. 2021;771:145167.
Google Scholar
Trainer VL, Bates SS, Lundholm N, Thessen AE, Cochlan WP, Adams NG, et al. Pseudo-nitzschia physiological ecology, phylogeny, toxicity, monitoring and impacts on ecosystem health. Harmful Algae. 2012;14:271–300.
Google Scholar
Zhu Z, Qu P, Gale J, Fu F, Hutchins DA. Individual and interactive effects of warming and CO2 on Pseudo-nitzschia subcurvata and Phaeocystis antarctica, two dominant phytoplankton from the Ross Sea, Antarctica. Biogeosciences. 2017;14:5281–95.
Google Scholar
Hutchins DA, Walworth NG, Webb EA, Saito MA, Moran D, McIlvin MR, et al. Irreversibly increased N2 fixation in Trichodesmium experimentally adapted to high CO2. Nat Commun. 2015;6:8155.
Google Scholar
Walworth NG, Lee MD, Fu FX, Hutchins DA, Webb EA. Molecular and physiological evidence of genetic assimilation to high CO2 in the marine nitrogen fixer Trichodesmium. P Natl Acad Sci. 2016;113:E7367–74.
Google Scholar
Schaum CE, Buckling A, Smirnoff N, Studholme DJ, Yvon-Durocher G. Environmental fluctuations accelerate molecular evolution of thermal tolerance in a marine diatom. Nat Commun. 2018;9:1719.
Google Scholar
Hutchins DA, Capone DG. The ocean nitrogen cycle: New developments and global change. Nat Rev Microbiol. 2022;20:401–14.
Google Scholar
Xu D, Tong S, Wang B, Zhang X, Wang W, Zhang X, et al. Ocean acidification stimulation of phytoplankton growth depends on the extent of departure from the optimal growth temperature. Mar Pollut Bull. 2022;177:113510.
Google Scholar
Hennon GMM, Sefbom J, Schaum E, Dyhrman ST, Godhe A Studying the acclimation and adaptation of HAB species to changing environmental conditions. In: Wells ML, et al. (eds.). GlobalHAB. 2021. Guidelines for the Study of Climate Change Effects on HABs. Paris: UNESCO-IOC/SCOR, 2021. pp 64–78.
Collins S, Bell G. Phenotypic consequences of 1,000 generations of selection at elevated CO2 in a green alga. Nature. 2004;431:566–9.
Google Scholar
Kremp A, Godhe A, Egardt J, Dupont S, Suikkanen S, Casabianca S, et al. Intraspecific variability in the response of bloom-forming marine microalgae to changed climate conditions. Ecol Evol. 2012;2:1195–207.
Google Scholar
Tatters AO, Schnetzer A, Fu F, Lie AY, Caron DA, Hutchins DA. Short‐versus long‐term responses to changing CO2 in a coastal dinoflagellate bloom: Implications for interspecific competitive interactions and community structure. Evolution. 2013;67:1879–91.
Google Scholar
Schaum CE, Collins S. Plasticity predicts evolution in a marine alga. P Roy Soc B-Biol Sci. 2014;281:20141486.
Moran XAG, Lopez-Urrutia Á, Calvo-Díaz A, Li WKW. Increasing importance of small phytoplankton in a warmer ocean. Glob Change Biol. 2010;16:1137–44.
Google Scholar
Thomas MK, Kremer CT, Klausmeier CA, Litchman EA. Global pattern of thermal adaptation in marine phytoplankton. Science. 2012;338:1085–88.
Google Scholar
Toseland ADSJ, Daines SJ, Clark JR, Kirkham A, Strauss J, Uhlig C, et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat Clim Change. 2013;3:979–84.
Google Scholar
Collins S. Many Possible Worlds: Expanding the Ecological Scenarios in Experimental Evolution. Evol Biol. 2011;38:3–14.
Google Scholar
Qu PP, Fu F, Wang XW, Kling JD, Elghazzawy M, Huh M, et al. Two co‐dominant nitrogen‐fixing cyanobacteria demonstrate distinct acclimation and adaptation responses to cope with ocean warming. Env Microbiol Rep. 2022;14:203–17.
Google Scholar
Lande R. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. J Evol Biol. 2009;22:1435–46.
Google Scholar
Draghi J, Whitlock MC. Phenotypic plasticity facilitates mutational variance, genetic variance, and evolvability along the major axis of environmental variation. Evolution 2012;66:2891–902.
Google Scholar
Collins S, Rost B, Rynearson TA. Evolutionary potential of marine phytoplankton under ocean acidification. Evol Appl. 2014;7:140–55.
Google Scholar
Kim H, Spivack AJ, Menden-Deuer S. pH alters the swimming behaviors of the raphidophyte Heterosigma akashiwo: Implications for bloom formation in an acidified ocean. Harmful Algae. 2013;26:1–11.
Google Scholar
Hennon GMM, Quay P, Morales RL, Swanson LM, Armbrust EV. Acclimation conditions modify physiological response of the diatom Thalassiosira pseudonana to elevated CO2 concentrations in a nitrate-limited chemostat. J Phycol. 2014;50:243–53.
Google Scholar
Daufresne M, Lengfellner K, Sommer U. Global warming benefits the small in aquatic ecosystems. Proc Natl Acad Sci. 2009;106:12788–93.
Google Scholar
Atkinson D, Ciotti BJ, Montagnes DJS. Protists decrease in size linearly with temperature: ca. 2.5% °C-1. Proc R Soc Lond B 2003;270:2605–11.
Google Scholar
Tong S, Gao K, Hutchins DA. Adaptive evolution in the coccolithophore Gephyrocapsa oceanica following 1,000 generations of selection under elevated CO2. Glob Chang Biol 2018;24:3055–64.
Google Scholar
Kelly KJ, Fu FX, Jiang X, Li H, Xu D, Yang N, et al. Interactions between ultraviolet B radiation, warming, and changing nitrogen source may reduce the accumulation of toxic Pseudo-nitzschia multiseries biomass in future coastal oceans. Front Mar Sci. 2021;8:433.
Google Scholar
Sterner R, Elser, J Ecological stoichiometry. In: Levin SA, et al. (eds) The Princeton Guide to Ecology. Princeton Univ. Press, 2009. pp 376–85.
Petrou K, Baker KG, Nielsen DA, Hancock AM, Schulz KG, Davidson AT. Acidification diminishes diatom silica production in the Southern Ocean. Nat Clim Change 2019;9:781–86.
Google Scholar
Source: Ecology - nature.com