in

Population genetic structure of a recent insect invasion: a gall midge, Asynapta groverae (Diptera: Cecidomyiidae) in South Korea since the first outbreak in 2008

  • Hobbs, R. J. (ed.) Invasive Species in a Changing World (Island press, 2000).

    Google Scholar 

  • Marbuah, G., Gren, I. M. & McKie, B. Economics of harmful invasive species: A review. Diversity 6, 500–523. https://doi.org/10.3390/d6030500 (2014).

    Article 

    Google Scholar 

  • Doherty, T. S., Glen, A. S., Nimmo, D. G., Ritchie, E. G. & Dickman, C. R. Invasive predators and global biodiversity loss. PNAS 113, 11261–11265. https://doi.org/10.1073/pnas.1602480113 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • David, P. et al. Impacts of invasive species on food webs: A review of empirical data. Adv. Ecol. Res. 56, 1–60. https://doi.org/10.1016/bs.aecr.2016.10.001 (2017).

    Article 

    Google Scholar 

  • Roy, H. E. et al. Developing a list of invasive alien species likely to threaten biodiversity and ecosystems in the European Union. Glob. Change Biol. 25, 1032–1048. https://doi.org/10.1111/gcb.14527 (2019).

    Article 
    ADS 

    Google Scholar 

  • Walther, G. R. et al. Alien species in a warmer world: Risks and opportunities. Trends Ecol. Evol. 24, 686–693. https://doi.org/10.1016/j.tree.2009.06.008 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Peyton, J. et al. Horizon scanning for invasive alien species with the potential to threaten biodiversity and human health on a Mediterranean island. Biol. Invasions 21, 2107–2125. https://doi.org/10.1007/s10530-019-01961-7 (2019).

    Article 

    Google Scholar 

  • Meyerson, L. A. & Mooney, H. A. Invasive alien species in an era of globalization. Front. Ecol. Environ. 5, 199–208. https://doi.org/10.1890/1540-9295(2007)5[199:IASIAE]2.0.CO;2 (2007).

    Article 

    Google Scholar 

  • Hulme, P. E. Trade, transport and trouble: Managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18. https://doi.org/10.1111/j.1365-2664.2008.01600.x (2009).

    Article 

    Google Scholar 

  • Lodge, D. M. Biol Invasions: Lessons for ecology. Trends Ecol. Evol. 8, 133–137. https://doi.org/10.1016/0169-5347(93)90025-K (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Keller, S. R. & Taylor, D. R. History, chance and adaptation during biological invasion: Separating stochastic phenotypic evolution from response to selection. Ecol. Lett. 11, 852–866. https://doi.org/10.1111/j.1461-0248.2008.01188.x (2008).

    Article 
    PubMed 

    Google Scholar 

  • Ham, D., Kim, W. G., Lee, H., Choi, D. S. & Bae, Y. J. New Korean record of the mycophagous gall midge Asynapta groverae (Diptera: Cecidomyiidae) with its outbreak situation and ecological notes. Newsl. Entomol. Soc. Korea. 11, 25–30 (2018) (in Korean).

    Google Scholar 

  • Grover, P. Studies on gall-midges from India XXXIV. On the study of Indian Porricondylini. Cecidologia Indica 6, 1–38 (1971).

    Google Scholar 

  • Jiang, Y. X. & Bu, W. J. A newly recorded gall midge genus (Diptera, Cecidomyiidae) with a species, Asynapta groverae Jiang et Bu, nom. Nov. from China. Acta. Zootax. Sinica. 29, 786–789 (2004).

    Google Scholar 

  • Bae, Y. J. Research report on the outbreak of the cecidomyiids (Diptera: Cecidomyiidae) from the Well-county apartment area in Songdo, Incheon. Incheon Metropolitan Development Corporation, Incheon 171 (2009) (in Korean).

  • Ham, D. & Bae, Y. J. Description of immature stages of Asynapta groverae (Diptera: Cecidomyiidae). Bull. Entomol. Res. 34, 103–107 (2018).

    Google Scholar 

  • Gagné, R. J. & Jaschhof, M. A Catalog of the Cecidomyiidae (Diptera) of the World. 5th Edition, Digital, 121–124 (2021).

  • Jones, M., Mautner, A., Luenco, S., Bismarck, A. & John, S. Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Mater. Des. 187, 108397. https://doi.org/10.1016/j.matdes.2019.108397 (2020).

    Article 
    CAS 

    Google Scholar 

  • Ross, K. G. & Shoemaker, D. D. Estimation of the number of founders of an invasive pest insect population: The fire ant Solenopsis invicta in the USA. Proc. R. Soc. B-Biol. Sci. 275, 2231–2240. https://doi.org/10.1098/rspb.2008.0412 (2008).

    Article 

    Google Scholar 

  • Brandt, M., Van Wlgenburg, E. & Tsutsui, N. D. Global-scale analyses of chemical ecology and population genetics in the invasive Argentine ant. Mol. Ecol. 18, 997–1005. https://doi.org/10.1111/j.1365-294X.2008.04056.x (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Amouroux, P., Normand, F., Nibouche, S. & Delatte, H. Invasive mango blossom gall midge, Procontarinia mangiferae (Felt) (Diptera: Cecidomyiidae) in Reunion Island: Ecological plasticity, permanent and structured populations. Biol. Invasions 15, 1677–1693. https://doi.org/10.1007/s10530-012-0400-0 (2013).

    Article 

    Google Scholar 

  • Horst, C. P. & Lau, J. A. Genetic variation in invasive species response to direct and indirect species interactions. Biol. Invasions 17, 651–659. https://doi.org/10.1007/s10530-014-0756-4 (2015).

    Article 

    Google Scholar 

  • Nei, M., Maruyama, T. & Chakraborty, R. The bottleneck effect and genetic variability in populations. Evolution 29, 1–10. https://doi.org/10.2307/2407137 (1975).

    Article 
    PubMed 

    Google Scholar 

  • Tsutsui, N. D. & Suarez, A. V. The colony structure and population biology of invasive ants. Conserv. Biol. 17, 48–58. https://doi.org/10.1046/j.1523-1739.2003.02018.x (2003).

    Article 

    Google Scholar 

  • Freeland, J. Molecular markers in ecology. In (eds Freeland, J., Pertersen, S. & Kirk, H.) Oxford 31–62 (2011).

  • Tsutsui, N. D., Suarez, A. V., Holway, D. A. & Case, T. J. Reduced genetic variation and the success of an invasive species. PNAS 97, 5948–5953. https://doi.org/10.1073/pnas.100110397 (2000).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Davis, M. A. Invasion Biology (Oxford University Press, 2009).

    Google Scholar 

  • Yao, Y. X. et al. Genetic variation may have promoted the successful colonization of the invasive gall midge, Obolodiplosis robiniae, in China. Front. Genet. 11, 387. https://doi.org/10.3389/fgene.2020.00387 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnson, R. N. & Starks, P. T. A surprising level of genetic diversity in an invasive wasp: Polistes dominulus in the northeastern United States. Ann. Entomol. Soc. Am. 97, 732–737. https://doi.org/10.1603/0013-8746(2004)097[0732:ASLOGD]2.0.CO;2 (2004).

    Article 

    Google Scholar 

  • Roderick, G. K. Geographic structure of insect populations: Gene flow, phylogeography, and their uses. Annu. Rev. Entomol. 41, 325–352. https://doi.org/10.1146/annurev.en.41.010196.001545 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Puillandre, N. et al. Genetic bottleneck in invasive species: The potato tuber moth adds to the list. Biol. Invasions 10, 319–333. https://doi.org/10.1007/s10530-007-9132-y (2008).

    Article 

    Google Scholar 

  • Zhan, A., Macisaac, H. J. & Cristescu, M. E. Invasion genetics of the Ciona intestinalis species complex: From regional endemism to global homogeneity. Mol. Ecol. 19, 4678–4694. https://doi.org/10.1111/j.1365-294X.2010.04837.x (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mallez, S. et al. Worldwide invasion routes of the pinewood nematode: What can we infer from population genetics analyses?. Biol. Invasions 17(4), 1199–1213. https://doi.org/10.1007/s10530-014-0788-9 (2015).

    Article 

    Google Scholar 

  • Tsutsui, N. D. & Case, T. J. Population genetics and colony structure of the Argentine ant (Linepithema humile) in its native and introduced ranges. Evolution 55, 976–985. https://doi.org/10.1111/j.0014-3820.2001.tb00614.x (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, H., Hoelmer, K. A. & Lee, S. Population genetics of the soybean aphid in North America and East Asia: Test for introduction between native and introduced populations. Biol. Invasions 19, 597–614. https://doi.org/10.1007/s10530-016-1299-7 (2017).

    Article 

    Google Scholar 

  • Chen, M. H. & Dorn, S. Microsatellites reveal genetic differentiation among populations in an insect species with high genetic variability in dispersal, the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). Bull. Entomol. Res. 100, 75–85 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zygouridis, N. E., Augustinos, A. A., Zalom, F. G. & Mathiopoulos, K. D. Analysis of olive fly invasion in California based on microsatellite markers. Heredity 102, 402–412. https://doi.org/10.1038/hdy.2008.125 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lesieur, V. et al. The rapid spread of Leptoglossus occidentalis in Europe: A bridgehead invasion. J. Pest Sci. 92, 189–200. https://doi.org/10.1007/s10340-018-0993-x (2019).

    Article 

    Google Scholar 

  • Mutitu, E. K. et al. Reconstructing early routes of invasion of the bronze bug Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae): Cities as bridgeheads for global pest invasions. Biol. Invasions 22, 2325–2338. https://doi.org/10.1007/s10530-020-02258-w (2020).

    Article 

    Google Scholar 

  • Peccoud, J. et al. Host range expansion of an introduced insect pest through multiple colonizations of specialized clones. Mol. Ecol. 17(21), 4608–4618. https://doi.org/10.1111/j.1365-294X.2008.03949.x (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Eyer, P. A., Moran, M. N., Blumenfeld, A. J. & Vargo, E. L. Development of a set of microsatellite markers to investigate sexually antagonistic selection in the invasive ant Nylanderia fulva. Insects 12, 643. https://doi.org/10.3390/insects12070643 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schauer, B., Bong, J., Popp, C., Obermaier, E. & Feldhaar, H. Dispersal limitation of saproxylic insects in a managed forest? A population genetics approach. Basic Appl. Ecol. 32, 26–38. https://doi.org/10.1016/j.baae.2018.01.005 (2018).

    Article 

    Google Scholar 

  • Bereczki, J., Póliska, S., Váradi, A. & Tóth, J. P. Incipient sympatric speciation via host race formation in Phengaris arion (Lepidoptera: Lycaenidae). Org. Divers. Evol. 20, 63–76. https://doi.org/10.1007/s13127-019-00418-y (2020).

    Article 

    Google Scholar 

  • Selkoe, K. A. & Toonen, R. J. Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers. Ecol. Lett. 9, 615–629. https://doi.org/10.1111/j.1461-0248.2006.00889.x (2006).

    Article 
    PubMed 

    Google Scholar 

  • Miah, G. et al. A review of microsatellite markers and their applications in rice breeding programs to improve blast disease resistance. Int. J. Mol. Sci. 14, 22499–22528. https://doi.org/10.3390/ijms141122499 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lloyd, C. J., Norton, A. P., Hufbauer, R. A., Bogdanowicz, S. M. & Nissen, S. J. Microsatellite isolation from the gall midge Spurgia capitigena (Diptera: Cecidomyiidae), a biological control agent of leafy spurge. Mol. Ecol. Notes 4, 605–607. https://doi.org/10.1111/j.1471-8286.2004.00751.x (2004).

    Article 
    CAS 

    Google Scholar 

  • Bentur, J. S. et al. Isolation and characterization of microsatellite loci in the Asian rice gall midge (Orseolia oryzae) (Diptera: Cecidomyiidae). Int. J. Mol. Sci. 12, 755–772. https://doi.org/10.3390/ijms12010755 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hinomoto, N., Higaki, T., Abe, J., Yamane, M. & Yano, E. Development and characterization of 21 polymorphic microsatellite loci in the aphidophagous gall midge, Aphidoletes aphidimyza (Diptera: Cecidomyiidae). Appl. Entomol. Zool. 47, 165–171. https://doi.org/10.1007/s13355-012-0104-z (2012).

    Article 
    CAS 

    Google Scholar 

  • Mezghani-Khemakhem, M. et al. Development of new polymorphic microsatellite loci for the barley stem gall midge, Mayetiola hordei (Diptera: Cecidomyiidae) from an Enriched Library. Int. J. Mol. Sci. 13, 14446–14450. https://doi.org/10.3390/ijms131114446 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, H. et al. Development and characterization of 12 microsatellite loci from the blueberry gall midge Dasineura oxycoccana (Diptera: Cecidomyiidae). Appl. Entomol. Zool. 50, 415–418. https://doi.org/10.1007/s13355-015-0335-x (2015).

    Article 

    Google Scholar 

  • Benzécri, J. P. Construction d’une classification ascendante hiérarchique par la recherche en chaîne des voisins réciproques. Cahiers de l’analyse des données. 7, 209–218 (1982).

    MATH 

    Google Scholar 

  • Simberloff, D. Invasive species. In Conservation Biology for all (eds Sodhi, N. S. & Ehrlich, P. R.) 131–152 (Oxford University Press, 2010).

    Chapter 

    Google Scholar 

  • Keum, E. et al. Morphological, genetic and symptomatic identification of an invasive jujube pest in Korea, Dasineura jujubifolia Jiao & Bu (Diptera: Cecidomyiidae). J. Asia Pac. Entomol. 101935, 2002. https://doi.org/10.1016/j.aspen.2022.101935 (2022).

    Article 

    Google Scholar 

  • Jaschhof, M. & Jaschhof, C. New and rarely found species of asynaptine Porricondylinae (Diptera: Cecidomyiidae) in northern Europe. Zootaxa https://doi.org/10.12651/JSR.2019.8.2.238 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Yuxia, J. & Wenjun, B. A newly recorded gall midge genus (Diptera, cecidomyiidae) with a species, Asynapta groverae Jiang et bu. nom. Nov. from China. Dong wu fen lei xue bao = Acta Zootaxonomica Sinica 29, 786–789 (2004).

    Google Scholar 

  • Mamaev, M. & Krivosheina, N. P. The Larvae of the Gall Miges (CRC Press, 1992).

    Google Scholar 

  • Dorchin, N., Harris, K. M. & Stireman, J. O. III. Phylogeny of the gall midges (Diptera, Cecidomyiidae, Cecidomyiinae): Systematics, evolution of feeding modes and diversification rates. Mol. Phylogenet. Evol. 140, 106602. https://doi.org/10.1016/j.ympev.2019.106602 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Gilpin, M. E. Minimal viable populations: Processes of species extinction. Conserv. Biol. Sci. Scarcity Divers. (1986).

  • Frankham, R., Ballou, J. D. & Briscoe, D. A. Introduction to Conservation Genetics (Cambridge University Press, 2002).

    Book 

    Google Scholar 

  • Hedrick, P. W. Genetic polymorphism in heterogeneous environments: The age of genomics. Annu. Rev. Ecol. Syst. 37, 67–93. https://doi.org/10.1146/annurev.ecolsys.37.091305.110132 (2006).

    Article 

    Google Scholar 

  • Kolbe, J. J. et al. Genetic variation increases during biological invasion by a Cuban lizard. Nature 431, 177–181. https://doi.org/10.1038/nature02807 (2004).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Frankham, R. Resolving the genetic paradox in invasive species. Heredity 94, 385–385. https://doi.org/10.1038/sj.hdy.6800634 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sakai, A. K. et al. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32, 305–332. https://doi.org/10.1146/annurev.ecolsys.32.081501.114037 (2001).

    Article 

    Google Scholar 

  • Wagner, N. P. Parthenogenesis in the larva of insects. Sci. Mem. Kasan Univ. 1, 25–111 (1862) (in Russian).

    Google Scholar 

  • Meinert, F. Miastor metraloas: yderlige oplysning om den af Prof. Nic. Wagner nyligt beskneune insektlarva, som formerer sig ved spinedannelse. Naturhistorisk Tidsskrqt R3(3), 37–43 (1864).

    Google Scholar 

  • Wyatt, I. J. Pupal paedogenesis in the Cecidomyiidae (Diptera). II. Proceedings of the Royal Entomological Society of London. J. Entomol. Ser. A-Gen. 38, 136–144. https://doi.org/10.1111/j.1365-3032.1963.tb00768.x (1963).

    Article 

    Google Scholar 

  • Wyatt, I. J. Immature stages of Lestremiinae (Diptera: Cecidomyiidae) infesting cultivated mushrooms. Trans. R. Entomol. Soc. Lond. 116, 15–27. https://doi.org/10.1111/j.1365-2311.1964.tb00823.x (1964).

    Article 

    Google Scholar 

  • Panelius, I. J. A revision of the European gall midges of the subfamily Porricondylinae (Diptera: Itonididae). Acta Zool. Fenn. 13, 1–157 (1965).

    Google Scholar 

  • Schüpbach, P. M. & Camenzind, R. Germ cell lineage and follicle formation in paedogenetic development of Mycophila speyeri Barnes (Diptera: Cecidomyiidae). Int. J. Insect Morphol. Embryol. 12, 211–223. https://doi.org/10.1016/0020-7322(83)90018-1 (1983).

    Article 

    Google Scholar 

  • Sikora, T., Jaschhof, M., Mantič, M., Kaspřák, D. & Ševčík, J. Considerable congruence, enlightening conflict: molecular analysis largely supports morphology-based hypotheses on Cecidomyiidae (Diptera) phylogeny. Zool. J. Linn. Soc. 185, 98–110. https://doi.org/10.1093/zoolinnean/zly029 (2019).

    Article 

    Google Scholar 

  • Gould, S. J. Ontogeny and Phylogeny (Harvard University Press, 1985).

    Google Scholar 

  • Went, D. F. Paedogenesis in the dipteran insect Heteropeza pygmaea: An interpretation. Int. J. Invertebr. Reprod. 1, 21–30. https://doi.org/10.1080/01651269.1979.10553296 (1979).

    Article 

    Google Scholar 

  • Hodin, J. & Riddiford, L. M. Parallel alterations in the timing of ovarian ecdysone receptor and ultraspiracle expression characterize the independent evolution of larval reproduction in two species of gall midges (Diptera: Cecidomyiidae). Dev. Genes Evol. 210, 358–372. https://doi.org/10.1007/s004270000079 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Olfert, O., Elliott, R. H. & Hartley, S. In Ecological Impacts of Non-native Invertebrates and Fungi on Terrestrial Ecosystems (eds Langor, D. W. & Sweeney, J.) 127–133 (Springer, 2008). https://doi.org/10.1007/978-1-4020-9680-8_9.

    Chapter 

    Google Scholar 

  • Miao, J. et al. Long-distance wind-borne dispersal of Sitodiplosis mosellana Géhin (Diptera: Cecidomyiidae) in Northern China. J. Insect Behav. 26, 120–129. https://doi.org/10.1007/s10905-012-9346-4 (2013).

    Article 

    Google Scholar 

  • Hao, Y. N. et al. Flight performance of the orange wheat blossom midge (Diptera: Cecidomyiidae). J. Econ. Entomol. 106, 2043–2047. https://doi.org/10.1603/EC13218 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • Luo, R. et al. SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler. GigaScience 1, 2047-217X-1–18. https://doi.org/10.1186/2047-217X-1-18 (2012).

    Article 

    Google Scholar 

  • Jiang, H., Lei, R., Ding, S. W. & Zhu, S. Skewer: A fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinform. 15, 1–12. https://doi.org/10.1186/1471-2105-15-182 (2014).

    Article 
    CAS 

    Google Scholar 

  • Beier, S., Thiel, T., Münch, T., Scholz, U. & Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 33, 2583–2585. https://doi.org/10.1093/bioinformatics/btx198 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. In Bioinformatics Methods and Protocols. Methods in Molecular Biology™ Vol. 132 (eds Misener, S. & Krawetz, S. A.) (Humana Press, 2000). https://doi.org/10.1385/1-59259-192-2:365.

    Chapter 

    Google Scholar 

  • Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).

    Article 
    PubMed 

    Google Scholar 

  • Petit, R. J., Mousadik, A. E. & Pons, O. Identifying populations for conservation on the basis of genetic markers. Conserv. Biol. 12, 844–855. https://doi.org/10.1111/j.1523-1739.1998.96489.x (1998).

    Article 

    Google Scholar 

  • Teacher, A. G. F. & Griffiths, D. J. HapStar: Automated haplotype network layout and visualization. Mol. Ecol. Resour. 11, 151–153. https://doi.org/10.1111/j.1755-0998.2010.02890.x (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rousset, F. Genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x (2008).

    Article 
    PubMed 

    Google Scholar 

  • Goudet, J. FSTAT, a program to estimate and test gene diversity and fixation indices (version 2.9.3). http://www2.unil.ch/popgen/softwares/fstat.htm (2001).

  • Van Oosterhout, C. V., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICROCHECKER v. 2.2.3. (2006).

  • Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N. & Bonhomme, F. GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Montpellier, France: Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II (2004).


  • Source: Ecology - nature.com

    Featured video: Investigating our blue ocean planet

    How to pull carbon dioxide out of seawater