Fan, M. & Yu, X. Impacts of the grain for green program on the spatial pattern of land uses and ecosystem services in mountainous settlements in southwest china. Glob. Ecol. Conserv. 21, 806. https://doi.org/10.1016/j.gecco.2019.e00806 (2020).
Google Scholar
Huang, L., Shao, Q. & Liu, J. The spatial and temporal patterns of carbon sequestration by forestation in Jiangxi Province. Acta Ecol. Sin. 35, 2105–2118 (2015).
Wang, B., Gao, P., Niu, X. & Sun, J. Policy-driven china’s grain to green program: Implications for ecosystem services. Ecosyst. Serv. 27, 38–47. https://doi.org/10.1016/j.gecco.2019.e00806 (2017).
Google Scholar
Deng, L., Zhou-ping, S. & Li, R. Effects of the grain-for-green program on soil erosion in China. Int. J. Sediment Res. 27, 120–127. https://doi.org/10.1016/s1001-6279(12)60021-3 (2012).
Google Scholar
Cragun, D. et al. Qualitative comparative analysis: A hybrid method for identifying factors associated with program effectiveness. J. Mix. Methods Res. 10, 251–272. https://doi.org/10.1177/1558689815572023 (2016).
Google Scholar
Biancardo, S. A. et al. An innovative framework for integrating cost-benefit analysis (cba) within building information modeling (bim). Socio-Econ. Plan. Sci. 85, 1014795. https://doi.org/10.1016/j.seps.2022.101495 (2022).
Google Scholar
Miller, C. J., Smith, S. N. & Pugatch, M. Experimental and quasi-experimental designs in implementation research. Psychiatry Res. 283, 112452. https://doi.org/10.1016/j.psychres.2019.06.027 (2020).
Google Scholar
Park, S.-G. et al. Characteristics of the flow field inside and around a square fish cage considering the circular swimming pattern of a farmed fish school: Laboratory experiments and field observations. Ocean. Eng. 261, 112097. https://doi.org/10.1016/j.oceaneng.2022.112097 (2022).
Google Scholar
Zhou, F. & Wang, X. The carbon emissions trading scheme and green technology innovation in china: A new structural economics perspective. Econ. Anal. Policy 74, 365–381. https://doi.org/10.1016/j.eap.2022.03.007 (2022).
Google Scholar
Gharehgozli, O. An empirical comparison between a regression framework and the synthetic control method. Q. Rev. Econ. Financ. 81, 70–81. https://doi.org/10.1016/j.qref.2021.05.002 (2021).
Google Scholar
Salman, M., Long, X., Wang, G. & Zha, D. Paris climate agreement and global environmental efficiency: New evidence from fuzzy regression discontinuity design. Energy Policy 168, 113128. https://doi.org/10.1016/j.enpol.2022.113128 (2022).
Google Scholar
Stanford, B., Zavaleta, E. & Millard-Ball, A. Where and why does restoration happen? Ecological and sociopolitical influences on stream restoration in coastal california. Biol. Conserv. 221, 219–227. https://doi.org/10.1016/j.biocon.2018.03.016 (2018).
Google Scholar
Milchakova, L., Bondareva, N. A. & Alexandrov, V. Core areas in the structure of the regional ecological framework of Sevastopol City. South Russia-Ecol. Dev. 17, 102–114. https://doi.org/10.18470/1992-1098-2022-2-102-114 (2022).
Google Scholar
Miller, R., Nielsen, E. & Huang, C.-H. Ecosystem service valuation through wildfire risk mitigation: Design, governance, and outcomes of the flagstaff watershed protection project (fwpp). Forests 8, 142. https://doi.org/10.3390/f8050142 (2017).
Google Scholar
Zhao, H. E. A. Spatiotemporal patterns of vegetation conversion under the grain for green program in southwest China. Conserv. Sci. Pract. 4, e604. https://doi.org/10.1111/csp2.604 (2022).
Google Scholar
Guo, B., Xie, T. & Subrahmanyam, M. The impact of china’s grain for green program on rural economy and precipitation: A case study of Yan river basin in the loess plateau. Sustainability 11, 5336. https://doi.org/10.3390/su11195336 (2019).
Google Scholar
Zuo, Y., Cheng, J. & Fu, M. Analysis of land use change and the role of policy dimensions in ecologically complex areas: A case study in Chongqing. Land 11, 627. https://doi.org/10.3390/land11050627 (2022).
Google Scholar
Delang, C. O. The effects of china’s grain for green program on migration and remittance. Econ. Agrar. Recursos. Nat. 18, 117–132. https://doi.org/10.2004/ag.econ.281239 (2019).
Google Scholar
Treacy, P. E. A. Impacts of china’s grain for green program on migration and household income. Environ. Manage. 62, 489–499. https://doi.org/10.1007/s00267-018-1047-0 (2018).
Google Scholar
Han, R., Guo, L., Xu, N. & Wang, D. The effect of the grain for green program on ecosystem health in the upper reaches of the Yangtze river basin: A case study of eastern Sichuan, China. Int. J. Environ. Res. Public Heal. 16, 2112. https://doi.org/10.3390/ijerph16122112 (2019).
Google Scholar
Zhang, X., Liu, K., Li, X., Wang, S. & Wang, J. Vulnerability assessment and its driving forces in terms of ndvi and gpp over the loess plateau, China. Phys. Chem. Earth Parts A/B/C 125, 103106. https://doi.org/10.1016/j.pce.2022.103106 (2022).
Google Scholar
Liu, L., Yan, J. & Li, S. Spatial-temporal characteristics of vegetation restoration in Qinghai Province from 2000 to 2009. Bull. Soil Water Conserv. 34, 263–267 (2014).
Google Scholar
Shao, E. A. Q. Target-based assessment on effects of first-stage ecological conservation and restoration project in three-river source region, china and policy recommendations. Bull. Chin. Acad. Sci. (Chin. Vers.) 32, 35–44 (2017).
Guo, E. A. J. The dynamic evolution of the ecological footprint and ecological capacity of Qinghai Province. Sustainability 12, 3065. https://doi.org/10.3390/su12073065 (2020).
Google Scholar
Jiang, W., Yihe, L., Yuanxin, L. & Wenwen, G. Ecosystem service value of the Qinghai-Tibet plateau significantly increased during 25 years. Ecosyst. Serv. 44, 101146. https://doi.org/10.1016/j.ecoser.2020.101146 (2020).
Google Scholar
Xie, S. W. W. Research on the coupling coordination between economic development and ecological environment—a case study of ecological civilization construction of Qinghai Province. Plateau Sci. Res. 4, 36–45 (2020).
Jielan, L., Xingpeng, C., Yu, W. & Zilong, Z. Research on the sustainable development in Qinghai province based on systemdynamics. Resour. Sci. 31, 1624–1631 (2009).
Tabutin, E. T. D. The relationships between population growth and environment: From doctrinal to empirical. Revuet.-monde 33, 273–294 (1992).
Google Scholar
Fu, E. A. G. Impact of the grain for green program on forest cover in China. J. Environ. Econ. Policy 8, 231–249. https://doi.org/10.1080/21606544.2018.1552626 (2019).
Google Scholar
Jia, E. A. X. The tradeoff and synergy between ecosystem services in the grain-for-green areas in northern Shaanxi, China. Ecol. Indic. 43, 103–113. https://doi.org/10.1016/j.ecolind.2014.02.028 (2014).
Google Scholar
Deng, L., Guo-bin, L. & Zhou-ping, S. Land-use conversion and changing soil carbon stocks in China’s ‘grain-for-green’program: A synthesis. Glob. Chang. Biol. 20, 3544–3556. https://doi.org/10.1111/gcb.12508 (2014).
Google Scholar
Deng, E. A. L. Past and future carbon sequestration benefits of China’s grain for green program. Glob. Environ. Chang. 47, 13–20. https://doi.org/10.1016/j.gloenvcha.2017.09.006 (2017).
Google Scholar
Cao, E. A. S. Payoff of the grain for green policy. J. Appl. Ecol. 57, 1180–1188. https://doi.org/10.1111/1365-2664.13608 (2020).
Google Scholar
Guo, H., Li, B., Hou, Y., Lu, S. & Nan, B. Rural households’ willingness to participate in the grain for green program again: A case study of Zhungeer, China. For. Policy Econ. 44, 42–49. https://doi.org/10.1016/j.forpol.2014.05.002 (2014).
Google Scholar
Li, E. A. Y. Coupling between the grain for green program and a household level-based agricultural eco-economic system in Ansai, Shaanxi Province of China. J. Arid Land 12, 199–214. https://doi.org/10.1007/s40333-020-0060-3 (2020).
Google Scholar
Li, Y., Feng, Y., Guo, X. & Peng, F. Changes in coastal city ecosystem service values based on land use—a case study of Yingkou, China. Land Use Policy 65, 287–293. https://doi.org/10.1016/j.landusepol.2017.04.021 (2017).
Google Scholar
Peng, E. A. J. Ecosystem services response to urbanization in metropolitan areas: Thresholds identification. Sci. Total. Environ. 607, 706–714. https://doi.org/10.1016/j.scitotenv.2017.06.218 (2017).
Google Scholar
Costanza, E. A. R. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260. https://doi.org/10.1038/387253a0 (1997).
Google Scholar
Wu, X., Wang, S., Fu, B., Liu, Y. & Zhu, Y. Land use optimization based on ecosystem service assessment: A case study in the yanhe watershed. Land Use Policy 72, 303–312. https://doi.org/10.1016/j.landusepol.2018.01.003 (2018).
Google Scholar
Zhou, E. A. Y. Land use-driven changes in ecosystem service values and simulation of future scenarios: A case study of the Qinghai–Tibet plateau. Sustainability 13, 4079. https://doi.org/10.3390/su13074079 (2021).
Google Scholar
Han, W. S. X. Z. Responses of ecosystem service to land use change in Qinghai province. Energies 9, 303. https://doi.org/10.1016/j.landusepol.2018.01.003 (2016).
Google Scholar
Shooshtari, S. J., Shayesteh, K., Gholamalifard, M., Azari, M. & López-Moreno, J. I. Land cover change modelling in hyrcanian forests, northern Iran: A landscape pattern and transformation analysis perspective. Cuader. De Investig. Geogr. 44, 743–761. https://doi.org/10.18172/cig.3279 (2018).
Google Scholar
Boerema, A., Rebelo, A. J., Bodi, M. B., Esler, K. J. & Meire, P. Are ecosystem services adequately quantified?. J. Appl. Ecol. 54, 358–370. https://doi.org/10.1111/1365-2664.12696 (2017).
Google Scholar
Costanza, E. A. R. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158. https://doi.org/10.1016/j.gloenvcha.2014.04.002 (2014).
Google Scholar
Newton, E. A. A. Assessing, quantifying and valuing the ecosystem services of coastal lagoons. J. For. Nat. Conserv. 44, 50–65. https://doi.org/10.1016/j.jnc.2018.02.009 (2018).
Google Scholar
Wang, L.-J., Ma, S., Zhao, Y.-G. & Zhang, J.-C. Ecological restoration projects did not increase the value of all ecosystem services in northeast china. For. Ecol. Manag. 495, 119340. https://doi.org/10.1016/j.foreco.2021.119340 (2021).
Google Scholar
Sun, X. & Li, F. Spatiotemporal assessment and trade-offs of multiple ecosystem services based on land use changes in zengcheng, china. Sci. Total Env. 609, 1569–1581. https://doi.org/10.1016/j.scitotenv.2017.07.221 (2017).
Google Scholar
Aulia, A., Sandhu, H. & Millington, A. Quantifying the economic value of ecosystem services in oil palm dominated landscapes in Riau Province in Sumatra, Indonesia. Land 9, 194. https://doi.org/10.3390/land9060194 (2020).
Google Scholar
Peng, E. A. J. Simulating the impact of grain-for-green programme on ecosystem services trade-offs in northwestern Yunnan, China. Ecosyst. Serv. 39, 100998 (2019).
Google Scholar
Shi, Y., Shi, D., Zhou, L. & Fang, R. Identification of ecosystem services supply and demand areas and simulation of ecosystem service flows in Shanghai. Ecol. Indic. 115, 106418. https://doi.org/10.1016/j.ecolind.2020.106418 (2020).
Google Scholar
Zoderer, B. M., Tasser, E., Carver, S. & Tappeiner, U. Stakeholder perspectives on ecosystem service supply and ecosystem service demand bundles. Ecosyst. Serv. 37, 100938. https://doi.org/10.1016/j.ecoser.2019.100938 (2019).
Google Scholar
Bryan, B. A., Ye, Y., Zhang, J. & Connor, J. D. Land-use change impacts on ecosystem services value: Incorporating the scarcity effects of supply and demand dynamics. Ecosyst. services 32, 144–157. https://doi.org/10.1016/j.ecoser.2018.07.002 (2018).
Google Scholar
Xiaojuan, Q. & Yufen, T. Coordinative development between population, economy, resources and environment in north-west area of china. China Popul. Resour. Environ. 18, P110-114 (2008).
Haiyang, Z., Zhang, Z. & Zhang, P. Rs-and gis-based evaluation and dynamic monitoring of land desertification in Qinghai Province. Arid Zone Res. 24, 153–158 (2007).
Kang, B. et al. Research on grassland ecosystem service value in china under climate change based on meta-analysis: A case study of Qinghai Province. Int. J. Clim. Chang. Strateg. Manag. https://doi.org/10.1108/ijccsm-06-2020-0073 (2020).
Google Scholar
Wang, X. & Zang, Y. Carbon footprint of the agricultural sector in Qinghai Province, China. Appl. Sci. 9, 2047. https://doi.org/10.3390/app9102047 (2019).
Google Scholar
Wei, E. A. W. The dynamic analysis and comparison of emergy ecological footprint for the qinghai–tibet plateau: A case study of Qinghai Province and Tibet. Sustainability 11, 5587. https://doi.org/10.3390/su11205587 (2019).
Google Scholar
Chen, E. A. W. An emergy accounting based regional sustainability evaluation: A case of Qinghai in China. Ecol. Indic. 88, 152–160. https://doi.org/10.1016/j.ecolind.2017.12.069 (2018).
Google Scholar
National Bureau of Statistics of China. Chinese Statistical Yearbook 2021 (China Statistics Press, 2021).
Statistics Bureau of Qinghai Province. Qinghai Statistical Yearbook 2021 (China Statistics Press, 2021).
Zhang, J. & Ren, Z. Spatiotemporal pattern and terrain gradient effect of land use change in Qinling-Bashan mountains. Trans. Chin. Soc. Agric. Eng. 32, 250–257 (2016).
Liao, K. The discussion and prospect for geo-informatic Tupu. Geo-inf. Sci. 1, 14–20 (2002).
Google Scholar
Lu, X., Shi, Y., Chen, C. & Yu, M. Monitoring cropland transition and its impact on ecosystem services value in developed regions of china: A case study of Jiangsu Province. Land Use Policy 69, 25–40. https://doi.org/10.1016/j.landusepol.2017.08.035 (2017).
Google Scholar
Lyu, X., Shi, Y. Y., Huang, X. J., Sun, X. F. & Miao, Z. W. Geo-spectrum characteristics of land use change in Jiangsu Province, China. The J. Appl. Ecol. 27, 1077–1084. https://doi.org/10.13287/j.1001-9332.201604.006 (2016).
Google Scholar
Dong, S., Zhao, Y. & Li, X. Spatiotemporal patterns of land use change in plateau region based on the terrain gradient—a case study in Panxian county, Guizhou Province. Res. Soil Water Conserv. 24, 213–222 (2017).
Oneill, R. V., Riitters, K. H., Wickham, J. D. & Jones, K. B. Landscape pattern metrics and regional assessment. Ecosyst. Health 5, 225–233. https://doi.org/10.1046/j.1526-0992.1999.09942.x (1999).
Google Scholar
Xie, G. D., Zhang, C. X., Zhang, L. M., Chen, W. H. & Li, S. M Improvement of the evaluation method for ecosystem service value based on per unit area. J. Nat. Resour. 30, 1243 (2015).
Wang, Y., Erfu, D., Le, Y. & Liang, M. Land use/land cover change and the effects on ecosystem services in the Hengduan mountain region, China. Ecosyst. Serv. 34, 55–67. https://doi.org/10.1016/j.ecoser.2018.09.008 (2018).
Google Scholar
Li, R., Shi, Y., Feng, C.-C. & Guo, L. The spatial relationship between ecosystem service scarcity value and urbanization from the perspective of heterogeneity in typical arid and semiarid regions of china. Ecol. Indic. 132, 108299 (2021).
Google Scholar
Shi, Y., Feng, C.-C., Yu, Q. & Guo, L. Integrating supply and demand factors for estimating ecosystem services scarcity value and its response to urbanization in typical mountainous and hilly regions of south china. Sci. Total. Environ. 796, 149032 (2021).
Google Scholar
Liu, C. F., Li, J. Z., Li, X. M., He, X. Y. & Chen, W. Selection of landscape metrics for urban forest based on simulated landscapes. J. Appl. Ecol. 20, 1125–1131 (2009).
Zhao, L., Fan, X., Lin, H. & Hong, T. W Hong Impact of expressways on land use changes, landscape patterns, and ecosystem services value in Nanping city, China. Pol. J. Environ. Stud. 30, 2935–2946. https://doi.org/10.15244/pjoes/128584 (2021).
Google Scholar
Xu, W., Dong, X. & Zhang, Z. Spatiotemporal scale effect of vegetation landscape pattern in Saihanba area. J. North-East For. Univ. 49, 106 (2021).
Schmidt, K., Sachse, R. & Walz, A. Current role of social benefits in ecosystem service assessments. Landsc. Urban Plan. 149, 49–64. https://doi.org/10.1016/j.landurbplan.2016.01.005 (2016).
Google Scholar
Akber, M., Khan, M., Islam-M, R., Munsur, R. & Mohammad, A. Impact of land use change on ecosystem services of southwest coastal bangladesh. J. land Use Science 13, 238–250. https://doi.org/10.1080/1747423x.2018.1529832 (2018).
Google Scholar
Wang, E. A. & Xiaobin, C. Linking land use change, ecosystem services and human well-being: A case study of the manas river basin of Xinjiang, China. Ecosyst. Serv. 27, 113–123. https://doi.org/10.1016/j.ecoser.2017.08.013 (2017).
Google Scholar
Ouyang, L. T., Xiao, W. & Yongh, L. X. Spatial interaction between urbanization and ecosystem services in chinese urban agglomerations. Land Use Policy 109, 105587. https://doi.org/10.1016/j.landusepol.2021.105587 (2021).
Google Scholar
Chen, G., Chi, J. & Li, W. X. The spatial association of ecosystem services with land use and land cover change at the county level in China, 1995–2015. Sci. Total. Environ. 669, 459–470. https://doi.org/10.1016/j.scitotenv.2019.03.139 (2019).
Google Scholar
Singh, E. A. D. Distinct influences of land cover and land management on seasonal climate. J. Geophys. Res. Atmos. 123, 12017. https://doi.org/10.1029/2018JD028874 (2018).
Google Scholar
Diffenbaugh, N. S. Influence of modern land cover on the climate of the united states. Clim. Dyn. 33, 945–958. https://doi.org/10.1007/s00382-009-0566-z (2009).
Google Scholar
Source: Ecology - nature.com