in

Rapid upwards spread of non-native plants in mountains across continents

  • Essl, F. et al. A conceptual framework for range-expanding species that track human-induced environmental change. BioScience 69, 908–919 (2019).

    Article 

    Google Scholar 

  • Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).

    Article 

    Google Scholar 

  • Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    Article 

    Google Scholar 

  • Freeman, B. G., Lee-Yaw, J. A., Sunday, J. M. & Hargreaves, A. L. Expanding, shifting and shrinking: the impact of global warming on species’ elevational distributions. Glob. Ecol. Biogeogr. 27, 1268–1276 (2018).

    Article 

    Google Scholar 

  • van Kleunen, M. et al. Global exchange and accumulation of non-native plants. Nature 525, 100–103 (2015).

    Article 

    Google Scholar 

  • Alexander, J. M. et al. Lags in the response of mountain plant communities to climate change. Glob. Change Biol. 24, 563–579 (2018).

    Article 

    Google Scholar 

  • Graae, B. J. et al. Stay or go—how topographic complexity influences alpine plant population and community responses to climate change. Perspect. Plant Ecol. Evol. Syst. 30, 41–50 (2018).

    Article 

    Google Scholar 

  • Rumpf, S. B., Hülber, K., Zimmermann, N. E. & Dullinger, S. Elevational rear edges shifted at least as much as leading edges over the last century. Glob. Ecol. Biogeogr. 28, 533–543 (2019).

    Article 

    Google Scholar 

  • Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).

    Article 
    CAS 

    Google Scholar 

  • Mamantov, M. A., Gibson-Reinemer, D. K., Linck, E. B. & Sheldon, K. S. Climate-driven range shifts of montane species vary with elevation. Glob. Ecol. Biogeogr. 30, 784–794 (2021).

    Article 

    Google Scholar 

  • Alexander, J. M. et al. Plant invasions into mountains and alpine ecosystems: current status and future challenges. Alp. Bot. 126, 89–103 (2016).

    Article 

    Google Scholar 

  • Pauchard, A. et al. Ain’t no mountain high enough: plant invasions reaching new elevations. Front. Ecol. Environ. 7, 479–486 (2009).

    Article 

    Google Scholar 

  • Alexander, J. M., MIREN Consortium et al. Assembly of nonnative floras along elevational gradients explained by directional ecological filtering. Proc. Natl Acad. Sci. USA 108, 656–661 (2011).

    Article 
    CAS 

    Google Scholar 

  • Seipel, T. et al. Processes at multiple spatial scales determine non-native plant species richness and similarity in mountain regions around the world. Glob. Ecol. Biogeogr. 21, 236–246 (2012).

    Article 

    Google Scholar 

  • Dainese, M. et al. Human disturbance and upward expansion of plants in a warming climate. Nat. Clim. Change 7, 577–580 (2017).

    Article 

    Google Scholar 

  • McDougall, K. L. et al. Running off the road: roadside non-native plants invading mountain vegetation. Biol. Invasions 20, 3461–3473 (2018).

    Article 

    Google Scholar 

  • Petitpierre, B. et al. Will climate change increase the risk of plant invasions into mountains? Ecol. Appl. 26, 530–544 (2016).

    Article 

    Google Scholar 

  • Lembrechts, J. J. et al. Microclimate variability in alpine ecosystems as stepping stones for non‐native plant establishment above their current elevational limit. Ecography 41, 900–909 (2017).

    Article 

    Google Scholar 

  • Haider, S. et al. Mountain roads and non-native species modify elevational patterns of plant diversity. Glob. Ecol. Biogeogr. 27, 667–678 (2018).

    Article 

    Google Scholar 

  • Wolf, A., Zimmerman, N. B., Anderegg, W. R. L., Busby, P. E. & Christensen, J. Altitudinal shifts of the native and introduced flora of California in the context of 20th-century warming. Glob. Ecol. Biogeogr. 25, 418–429 (2016).

    Article 

    Google Scholar 

  • Seipel, T., Alexander, J. M., Edwards, P. J. & Kueffer, C. Range limits and population dynamics of non-native plants spreading along elevation gradients. Perspect. Plant Ecol. Evol. Syst. 20, 46–55 (2016).

    Article 

    Google Scholar 

  • Koide, D., Yoshida, K., Daehler, C. C. & Mueller-Dombois, D. An upward elevation shift of native and non-native vascular plants over 40 years on the island of Hawai’i. J. Vegetation Sci. 28, 939–950 (2017).

    Article 

    Google Scholar 

  • Becker, T., Dietz, H., Billeter, R., Buschmann, H. & Edwards, P. J. Altitudinal distribution of alien plant species in the Swiss Alps. Perspect. Plant Ecol. Evol. Syst. 7, 173–183 (2005).

    Article 

    Google Scholar 

  • Haider, S. et al. The role of bioclimatic origin, residence time and habitat context in shaping non-native plant distributions along an altitudinal gradient. Biol. Invasions 12, 4003–4018 (2010).

    Article 

    Google Scholar 

  • Pyšek, P., Jarošík, V., Pergl, J. & Wild, J. Colonization of high altitudes by alien plants over the last two centuries. Proc. Natl Acad. Sci. USA 108, 439–440 (2011).

    Article 

    Google Scholar 

  • Gottfried, M. et al. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Change 2, 111–115 (2012).

    Article 

    Google Scholar 

  • Lenoir, J. et al. Going against the flow: potential mechanisms for unexpected downslope range shifts in a warming climate. Ecography 33, 295–303 (2010).

    Google Scholar 

  • Crimmins, S. M., Dobrowski, S. Z., Greenberg, J. A., Abatzoglou, J. T. & Mynsberge, A. R. Changes in climatic water balance drive downhill shifts in plant species’ optimum elevations. Science 331, 324–327 (2011).

    Article 
    CAS 

    Google Scholar 

  • Rumpf, S. B. et al. Range dynamics of mountain plants decrease with elevation. Proc. Natl Acad. Sci. USA 115, 1848–1853 (2018).

    Article 
    CAS 

    Google Scholar 

  • Scherrer, D. & Körner, C. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 38, 406–416 (2011).

    Article 

    Google Scholar 

  • Kelly, C. & Price, T. D. Correcting for regression to the mean in behavior and ecology. Am. Nat. 166, 700–707 (2005).

    Article 

    Google Scholar 

  • Mazalla, L. & Diekmann, M. Regression to the mean in vegetation science. J. Vegetation Sci. 33, e13117 (2022).

    Article 

    Google Scholar 

  • Colwell, R. K. & Lees, D. C. The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol. Evol. 15, 70–76 (2000).

    Article 
    CAS 

    Google Scholar 

  • Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).

    Article 
    CAS 

    Google Scholar 

  • Taheri, S., Naimi, B., Rahbek, C. & Araújo, M. B. Improvements in reports of species redistribution under climate change are required. Sci. Adv. 7, eabe1110 (2021).

    Article 

    Google Scholar 

  • Haider, S. et al. Think globally, measure locally: the MIREN standardized protocol for monitoring plant species distributions along elevation gradients. Ecol. Evol. 12, e8590 (2022).

    Article 

    Google Scholar 

  • Jacobsen, D. The dilemma of altitudinal shifts: caught between high temperature and low oxygen. Front. Ecol. Environ. 18, 211–218 (2020).

    Article 

    Google Scholar 

  • Kueffer, C. et al. in Plant Invasions in Protected Areas Vol. 7 (eds Foxcroft, L. C. et al.) 89–113 (Springer, 2013).

  • Halbritter, A. H., Alexander, J. M., Edwards, P. J. & Billeter, R. How comparable are species distributions along elevational and latitudinal climate gradients? Glob. Ecol. Biogeogr. 22, 1228–1237 (2013).

    Article 

    Google Scholar 

  • Vitasse, Y. et al. Phenological and elevational shifts of plants, animals and fungi under climate change in the European Alps. Biol. Rev. 96, 1816–1835 (2021).

    Article 

    Google Scholar 

  • Angert, A. L. et al. Do species’ traits predict recent shifts at expanding range edges? Ecol. Lett. 14, 677–689 (2011).

    Article 

    Google Scholar 

  • Matteodo, M., Wipf, S., Stöckli, V., Rixen, C. & Vittoz, P. Elevation gradient of successful plant traits for colonizing alpine summits under climate change. Environ. Res. Lett. 8, 024043 (2013).

    Article 

    Google Scholar 

  • Lembrechts, J. et al. Disturbance is the key to plant invasions in cold environments. Proc. Natl Acad. Sci. USA 113, 14061–14066 (2016).

    Article 
    CAS 

    Google Scholar 

  • Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article 

    Google Scholar 

  • Pebesma, E. Simple features for R: standardized support for spatial vector data. R J. 10, 439–446 (2018).

    Article 

    Google Scholar 

  • Kahle, D. & Wickham, H. ggmap: spatial visualization with ggplot2. R J. 5, 144–161 (2013). http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf

  • Seipel, T., Haider, S. & MIREN consortium. MIREN survey of plant species in mountains (v2.0). Zenodo https://doi.org/10.5281/zenodo.5529072 (2022).


  • Source: Ecology - nature.com

    Formation of necromass-derived soil organic carbon determined by microbial death pathways

    Mycelial nutrient transfer promotes bacterial co-metabolic organochlorine pesticide degradation in nutrient-deprived environments