Essl, F. et al. A conceptual framework for range-expanding species that track human-induced environmental change. BioScience 69, 908–919 (2019).
Google Scholar
Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).
Google Scholar
Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
Google Scholar
Freeman, B. G., Lee-Yaw, J. A., Sunday, J. M. & Hargreaves, A. L. Expanding, shifting and shrinking: the impact of global warming on species’ elevational distributions. Glob. Ecol. Biogeogr. 27, 1268–1276 (2018).
Google Scholar
van Kleunen, M. et al. Global exchange and accumulation of non-native plants. Nature 525, 100–103 (2015).
Google Scholar
Alexander, J. M. et al. Lags in the response of mountain plant communities to climate change. Glob. Change Biol. 24, 563–579 (2018).
Google Scholar
Graae, B. J. et al. Stay or go—how topographic complexity influences alpine plant population and community responses to climate change. Perspect. Plant Ecol. Evol. Syst. 30, 41–50 (2018).
Google Scholar
Rumpf, S. B., Hülber, K., Zimmermann, N. E. & Dullinger, S. Elevational rear edges shifted at least as much as leading edges over the last century. Glob. Ecol. Biogeogr. 28, 533–543 (2019).
Google Scholar
Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).
Google Scholar
Mamantov, M. A., Gibson-Reinemer, D. K., Linck, E. B. & Sheldon, K. S. Climate-driven range shifts of montane species vary with elevation. Glob. Ecol. Biogeogr. 30, 784–794 (2021).
Google Scholar
Alexander, J. M. et al. Plant invasions into mountains and alpine ecosystems: current status and future challenges. Alp. Bot. 126, 89–103 (2016).
Google Scholar
Pauchard, A. et al. Ain’t no mountain high enough: plant invasions reaching new elevations. Front. Ecol. Environ. 7, 479–486 (2009).
Google Scholar
Alexander, J. M., MIREN Consortium et al. Assembly of nonnative floras along elevational gradients explained by directional ecological filtering. Proc. Natl Acad. Sci. USA 108, 656–661 (2011).
Google Scholar
Seipel, T. et al. Processes at multiple spatial scales determine non-native plant species richness and similarity in mountain regions around the world. Glob. Ecol. Biogeogr. 21, 236–246 (2012).
Google Scholar
Dainese, M. et al. Human disturbance and upward expansion of plants in a warming climate. Nat. Clim. Change 7, 577–580 (2017).
Google Scholar
McDougall, K. L. et al. Running off the road: roadside non-native plants invading mountain vegetation. Biol. Invasions 20, 3461–3473 (2018).
Google Scholar
Petitpierre, B. et al. Will climate change increase the risk of plant invasions into mountains? Ecol. Appl. 26, 530–544 (2016).
Google Scholar
Lembrechts, J. J. et al. Microclimate variability in alpine ecosystems as stepping stones for non‐native plant establishment above their current elevational limit. Ecography 41, 900–909 (2017).
Google Scholar
Haider, S. et al. Mountain roads and non-native species modify elevational patterns of plant diversity. Glob. Ecol. Biogeogr. 27, 667–678 (2018).
Google Scholar
Wolf, A., Zimmerman, N. B., Anderegg, W. R. L., Busby, P. E. & Christensen, J. Altitudinal shifts of the native and introduced flora of California in the context of 20th-century warming. Glob. Ecol. Biogeogr. 25, 418–429 (2016).
Google Scholar
Seipel, T., Alexander, J. M., Edwards, P. J. & Kueffer, C. Range limits and population dynamics of non-native plants spreading along elevation gradients. Perspect. Plant Ecol. Evol. Syst. 20, 46–55 (2016).
Google Scholar
Koide, D., Yoshida, K., Daehler, C. C. & Mueller-Dombois, D. An upward elevation shift of native and non-native vascular plants over 40 years on the island of Hawai’i. J. Vegetation Sci. 28, 939–950 (2017).
Google Scholar
Becker, T., Dietz, H., Billeter, R., Buschmann, H. & Edwards, P. J. Altitudinal distribution of alien plant species in the Swiss Alps. Perspect. Plant Ecol. Evol. Syst. 7, 173–183 (2005).
Google Scholar
Haider, S. et al. The role of bioclimatic origin, residence time and habitat context in shaping non-native plant distributions along an altitudinal gradient. Biol. Invasions 12, 4003–4018 (2010).
Google Scholar
Pyšek, P., Jarošík, V., Pergl, J. & Wild, J. Colonization of high altitudes by alien plants over the last two centuries. Proc. Natl Acad. Sci. USA 108, 439–440 (2011).
Google Scholar
Gottfried, M. et al. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Change 2, 111–115 (2012).
Google Scholar
Lenoir, J. et al. Going against the flow: potential mechanisms for unexpected downslope range shifts in a warming climate. Ecography 33, 295–303 (2010).
Crimmins, S. M., Dobrowski, S. Z., Greenberg, J. A., Abatzoglou, J. T. & Mynsberge, A. R. Changes in climatic water balance drive downhill shifts in plant species’ optimum elevations. Science 331, 324–327 (2011).
Google Scholar
Rumpf, S. B. et al. Range dynamics of mountain plants decrease with elevation. Proc. Natl Acad. Sci. USA 115, 1848–1853 (2018).
Google Scholar
Scherrer, D. & Körner, C. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 38, 406–416 (2011).
Google Scholar
Kelly, C. & Price, T. D. Correcting for regression to the mean in behavior and ecology. Am. Nat. 166, 700–707 (2005).
Google Scholar
Mazalla, L. & Diekmann, M. Regression to the mean in vegetation science. J. Vegetation Sci. 33, e13117 (2022).
Google Scholar
Colwell, R. K. & Lees, D. C. The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol. Evol. 15, 70–76 (2000).
Google Scholar
Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).
Google Scholar
Taheri, S., Naimi, B., Rahbek, C. & Araújo, M. B. Improvements in reports of species redistribution under climate change are required. Sci. Adv. 7, eabe1110 (2021).
Google Scholar
Haider, S. et al. Think globally, measure locally: the MIREN standardized protocol for monitoring plant species distributions along elevation gradients. Ecol. Evol. 12, e8590 (2022).
Google Scholar
Jacobsen, D. The dilemma of altitudinal shifts: caught between high temperature and low oxygen. Front. Ecol. Environ. 18, 211–218 (2020).
Google Scholar
Kueffer, C. et al. in Plant Invasions in Protected Areas Vol. 7 (eds Foxcroft, L. C. et al.) 89–113 (Springer, 2013).
Halbritter, A. H., Alexander, J. M., Edwards, P. J. & Billeter, R. How comparable are species distributions along elevational and latitudinal climate gradients? Glob. Ecol. Biogeogr. 22, 1228–1237 (2013).
Google Scholar
Vitasse, Y. et al. Phenological and elevational shifts of plants, animals and fungi under climate change in the European Alps. Biol. Rev. 96, 1816–1835 (2021).
Google Scholar
Angert, A. L. et al. Do species’ traits predict recent shifts at expanding range edges? Ecol. Lett. 14, 677–689 (2011).
Google Scholar
Matteodo, M., Wipf, S., Stöckli, V., Rixen, C. & Vittoz, P. Elevation gradient of successful plant traits for colonizing alpine summits under climate change. Environ. Res. Lett. 8, 024043 (2013).
Google Scholar
Lembrechts, J. et al. Disturbance is the key to plant invasions in cold environments. Proc. Natl Acad. Sci. USA 113, 14061–14066 (2016).
Google Scholar
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Google Scholar
Pebesma, E. Simple features for R: standardized support for spatial vector data. R J. 10, 439–446 (2018).
Google Scholar
Kahle, D. & Wickham, H. ggmap: spatial visualization with ggplot2. R J. 5, 144–161 (2013). http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf
Seipel, T., Haider, S. & MIREN consortium. MIREN survey of plant species in mountains (v2.0). Zenodo https://doi.org/10.5281/zenodo.5529072 (2022).
Source: Ecology - nature.com