in

Reconciling policy instruments with drivers of deforestation and forest degradation: cross-scale analysis of stakeholder perceptions in tropical countries

  • Global Forest Resources Assessment 2020 (FAO, 2020).

  • Taubert, F. et al. Global patterns of tropical forest fragmentation. Nature 554, 519–522 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Vancutsem, C. et al. Long-term (1990–2019) monitoring of forest cover changes in the humid tropics. Sci. Adv. 7, eabe1603 (2021).

    ADS 

    Google Scholar 

  • Foley, J. A. et al. Amazonia revealed: Forest degradation and loss of ecosystem goods and services in the Amazon Basin. Front. Ecol. Environ. 5, 25–32 (2007).

    Google Scholar 

  • Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Brandon, K. Ecosystem services from tropical forests: Review of current science. SSRN J. https://doi.org/10.2139/ssrn.2622749 (2014).

    Article 

    Google Scholar 

  • Indarto, J. & Mutaqin, D. J. An overview of theoretical and empirical studies on deforestation. MPRA. Paper No. 70178 (2016).

  • Geist, H. J. & Lambin, E. F. Proximate causes and underlying driving forces of tropical deforestation: Tropical forests are disappearing as the result of many pressures, both local and regional, acting in various combinations in different geographical locations. Bioscience 52, 143–150 (2002).

    Google Scholar 

  • Angelsen, A. & Kaimowitz, D. Rethinking the causes of deforestation: Lessons from economic models. World Bank Res. Obs. 14, 73–98 (1999).

    CAS 

    Google Scholar 

  • Contreras-Hermosilla, A. The Underlying Causes of Forest Decline (Center for International Forestry Research, 2000).

    Google Scholar 

  • Turner, B. L. et al. Two types of global environmental change: Definitional and spatial-scale issues in their human dimensions. Glob. Environ. Change 1, 14–22 (1990).

    Google Scholar 

  • Meyer, W. B. & Turner, B. L. Human population growth and global land-use/cover change. Ann. Rev. Ecol. Syst. 2, 39–61 (1992).

    Google Scholar 

  • Miyamoto, M., Mohd Parid, M., Noor Aini, Z. & Michinaka, T. Proximate and underlying causes of forest cover change in Peninsular Malaysia. For. Policy Econ. 44, 18–25 (2014).

    Google Scholar 

  • Lim, C. L., Prescott, G. W., De Alban, J. D. T., Ziegler, A. D. & Webb, E. L. Untangling the proximate causes and underlying drivers of deforestation and forest degradation in Myanmar. Conserv. Biol. 31, 1362–1372 (2017).

    Google Scholar 

  • Carodenuto, S. et al. A methodological framework for assessing agents, proximate drivers and underlying causes of deforestation: Field test results from southern cameroon. Forests 6, 203–224 (2015).

    Google Scholar 

  • Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    ADS 
    CAS 

    Google Scholar 

  • Hosonuma, N. et al. An assessment of deforestation and forest degradation drivers in developing countries. Environ. Res. Lett. 7, 044009 (2012).

    ADS 

    Google Scholar 

  • Köthke, M., Leischner, B. & Elsasser, P. Uniform global deforestation patterns—An empirical analysis. For. Policy Econ. 28, 23–37 (2013).

    Google Scholar 

  • Busch, J. & Ferretti-Gallon, K. What drives deforestation and what stops it? A meta-analysis. Rev. Environ. Econ. Policy 11, 3–23 (2017).

    Google Scholar 

  • Ferrer Velasco, R. F., Köthke, M., Lippe, M. & Günter, S. Scale and context dependency of deforestation drivers: Insights from spatial econometrics in the tropics. PLoS One 15, e0226830 (2020).

    CAS 

    Google Scholar 

  • Lambin, E. F. et al. Effectiveness and synergies of policy instruments for land use governance in tropical regions. Glob. Environ. Change 28, 129–140 (2014).

    Google Scholar 

  • Börner, J., Schulz, D., Wunder, S. & Pfaff, A. The effectiveness of forest conservation policies and programs. Ann. Rev. Resour. Econ. 12, 45–64 (2020).

    Google Scholar 

  • Bemelmans-Videc, M.-L., Rist, R. C. & Vedung, E. Carrots, Sticks & Sermons: Policy Instruments and their Evaluation (Transaction Publishers, 1998).

    Google Scholar 

  • Seymour, F. & Harris, N. L. Reducing tropical deforestation. Science 365, 756–757 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Lambin, E. F. et al. The role of supply-chain initiatives in reducing deforestation. Nat. Clim. Change 8, 109–116 (2018).

    ADS 

    Google Scholar 

  • Wolff, S. & Schweinle, J. Effectiveness and economic viability of forest certification: A systematic review. Forests 13, 798 (2022).

    Google Scholar 

  • Müller, R., Pistorius, T., Rohde, S., Gerold, G. & Pacheco, P. Policy options to reduce deforestation based on a systematic analysis of drivers and agents in lowland Bolivia. Land Use Policy 30, 895–907 (2013).

    Google Scholar 

  • Tegegne, Y. T., Lindner, M., Fobissie, K. & Kanninen, M. Evolution of drivers of deforestation and forest degradation in the Congo Basin forests: Exploring possible policy options to address forest loss. Land Use Policy 51, 312–324 (2016).

    Google Scholar 

  • Hoffmann, C., García Márquez, J. R. & Krueger, T. A local perspective on drivers and measures to slow deforestation in the Andean-Amazonian foothills of Colombia. Land Use Policy 77, 379–391 (2018).

    Google Scholar 

  • Henders, S., Ostwald, M., Verendel, V. & Ibisch, P. Do national strategies under the UN biodiversity and climate conventions address agricultural commodity consumption as deforestation driver?. Land Use Policy 70, 580–590 (2018).

    Google Scholar 

  • Salvini, G. et al. How countries link REDD+ interventions to drivers in their readiness plans: implications for monitoring systems. Environ. Res. Lett. 9, 074004 (2014).

    ADS 

    Google Scholar 

  • Bos, A. B. et al. Integrated assessment of deforestation drivers and their alignment with subnational climate change mitigation efforts. Environ. Sci. Policy 114, 352–365 (2020).

    CAS 

    Google Scholar 

  • Fritz, S. et al. A continental assessment of the drivers of tropical deforestation with a focus on protected areas. Front. Conserv. Sci. https://doi.org/10.3389/fcosc.2022.830248 (2022).

    Article 

    Google Scholar 

  • Lawrence, D. & Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 5, 27–36 (2015).

    ADS 

    Google Scholar 

  • Fedele, G., Locatelli, B., Djoudi, H. & Colloff, M. J. Reducing risks by transforming landscapes: Cross-scale effects of land-use changes on ecosystem services. PLoS One 13, e0195895 (2018).

    Google Scholar 

  • Yackulic, C. B. et al. Biophysical and socioeconomic factors associated with forest transitions at multiple spatial and temporal scales. Ecol. Soc. https://doi.org/10.5751/ES-04275-160315 (2011).

    Article 

    Google Scholar 

  • Loran, C., Ginzler, C. & Bürgi, M. Evaluating forest transition based on a multi-scale approach: Forest area dynamics in Switzerland 1850–2000. Reg. Environ. Change 16, 1807–1818 (2016).

    Google Scholar 

  • Moonen, P. C. et al. Actor-based identification of deforestation drivers paves the road to effective REDD+in DR Congo. Land Use Policy 58, 123–132 (2016).

    Google Scholar 

  • Strassburg, B. The tragedy of the tropics: A dynamic, cross-scale analysis of deforestation incentives. Working Paper—Centre for Social and Economic Research on the Global Environment No. 07-02 (2007).

  • López-Carr, D. et al. Space versus place in complex human–natural systems: Spatial and multi-level models of tropical land use and cover change (LUCC) in Guatemala. Ecol. Model. 229, 64–75 (2012).

    Google Scholar 

  • Hoang, N. T. & Kanemoto, K. Mapping the deforestation footprint of nations reveals growing threat to tropical forests. Nat. Ecol. Evol. 5, 845–853 (2021).

    Google Scholar 

  • Pendrill, F. et al. Agricultural and forestry trade drives large share of tropical deforestation emissions. Glob. Environ. Change 56, 1–10 (2019).

    Google Scholar 

  • Ferrer Velasco, R. et al. Towards accurate mapping of forest in tropical landscapes: A comparison of datasets on how forest transition matters. Remote Sens. Environ. 274, 112997 (2022).

    ADS 

    Google Scholar 

  • Jayathilake, H. M., Prescott, G. W., Carrasco, L. R., Rao, M. & Symes, W. S. Drivers of deforestation and degradation for 28 tropical conservation landscapes. Ambio 50, 215–228 (2021).

    Google Scholar 

  • Minang, P. A. et al. REDD+Readiness progress across countries: Time for reconsideration. Clim. Policy 14, 685–708 (2014).

    Google Scholar 

  • Current pledges | Bonn challenge. https://www.bonnchallenge.org/pledges. Accessed: 15th August 2022.

  • Nansikombi, H. et al. Can de facto governance influence deforestation drivers in the Zambian Miombo?. For. Policy Econ. 120, 102309 (2020).

    Google Scholar 

  • Sullivan, A., York, A., White, D., Hall, S. & Yabiku, S. D. Jure versus de facto institutions: Trust, information, and collective efforts to manage the invasive mile-a-minute weed (Mikania micrantha). Int. J. Commons 11, 171–199 (2017).

    Google Scholar 

  • Busch, J. & Amarjargal, O. Authority of second-tier governments to reduce deforestation in 30 tropical countries. Front. For. Glob. Change https://doi.org/10.3389/ffgc.2020.00001 (2020).

    Article 

    Google Scholar 

  • Sandström, C., Eckerberg, K. & Raitio, K. Studying conflicts, proposing solutions—Towards multi-level approaches to the analyses of forest conflicts. For. Policy Econ. 33, 123–127 (2013).

    Google Scholar 

  • Hoogstra-Klein, M. A., Permadi, D. B. & Yasmi, Y. The value of cultural theory for participatory processes in natural resource management. For. Policy Econ. 20, 99–106 (2012).

    Google Scholar 

  • de Jong, W., Ruiz, S. & Becker, M. Conflicts and communal forest management in northern Bolivia. For. Policy Econ. 8, 447–457 (2006).

    Google Scholar 

  • Eckerberg, K. & Sandström, C. Forest conflicts: A growing research field. For. Policy Econ. 33, 3–7 (2013).

    Google Scholar 

  • Sierra, R., Calva, O. & Guevara, A. La Deforestación en el Ecuador, 1990–2018. Factores promotores y tendencias recientes, 216 (2021).

  • Wasserstrom, R. & Southgate, D. Deforestation, agrarian reform and oil development in Ecuador, 1964–1994. Nat. Resour. 04, 31 (2013).

    Google Scholar 

  • Wiebe, P. C., Zhunusova, E., Lippe, M., Ferrer Velasco, R. & Günter, S. What is the contribution of forest-related income to rural livelihood strategies in the Philippines’ remaining forested landscapes?. For. Policy Econ. 135, 102658 (2022).

    Google Scholar 

  • Le, H. D., Smith, C. & Herbohn, J. What drives the success of reforestation projects in tropical developing countries? The case of the Philippines. Glob. Environ. Change 24, 334–348 (2014).

    Google Scholar 

  • Carandang, A. P. et al. Analysis of key drivers of deforestation and forest degradation in the Philippines. Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) (2013).

  • Phiri, D., Morgenroth, J. & Xu, C. Four decades of land cover and forest connectivity study in Zambia—An object-based image analysis approach. Int. J. Appl. Earth Obs. Geoinf. 79, 97–109 (2019).

    ADS 

    Google Scholar 

  • Nansikombi, H., Fischer, R., Kabwe, G. & Günter, S. Exploring patterns of forest governance quality: Insights from forest frontier communities in Zambia’s Miombo ecoregion. Land Use Policy 99, 104866 (2020).

    Google Scholar 

  • Zhang, H., Wang, P. & Wood, J. Does institutional quality matter for the nexus between environmental quality and economic growth?: A tropics perspective. In Business, Industry, and Trade in the Tropics (eds Wood, J. et al.) (Routledge, 2022).

    Google Scholar 

  • Reed, J., Van Vianen, J., Deakin, E. L., Barlow, J. & Sunderland, T. Integrated landscape approaches to managing social and environmental issues in the tropics: Learning from the past to guide the future. Glob. Change Biol. 22, 2540–2554 (2016).

    ADS 

    Google Scholar 

  • Fischer, R. et al. Interplay of governance elements and their effects on deforestation in tropical landscapes: Quantitative insights from Ecuador. World Dev. 148, 105665 (2021).

    Google Scholar 

  • Torres, B., Vasco, C., Günter, S. & Knoke, T. Determinants of agricultural diversification in a hotspot area: Evidence from colonist and indigenous communities in the Sumaco biosphere reserve Ecuadorian Amazon. Sustainability 10, 1432 (2018).

    Google Scholar 

  • Ojeda Luna, T., Zhunusova, E., Günter, S. & Dieter, M. Measuring forest and agricultural income in the Ecuadorian lowland rainforest frontiers: Do deforestation and conservation strategies matter?. For. Policy Econ. 111, 102034 (2020).

    Google Scholar 

  • Kazungu, M. et al. Effects of household-level attributes and agricultural land-use on deforestation patterns along a forest transition gradient in the Miombo landscapes Zambia. Ecol. Econ. 186, 107070 (2021).

    Google Scholar 

  • Kleemann, J. et al. Deforestation in continental ecuador with a focus on protected areas. Land 11, 268 (2022).

    Google Scholar 

  • Mulenga, M. M. & Roos, A. Assessing the awareness and adoptability of pellet cookstoves for low-income households in Lusaka, Zambia. J. Energy South. Afr. 32, 52–61 (2021).

    Google Scholar 

  • Eguiguren, P., Ojeda Luna, T., Torres, B., Lippe, M. & Günter, S. Ecosystem service multifunctionality: Decline and recovery pathways in the amazon and chocó lowland rainforests. Sustainability 12, 7786 (2020).

    CAS 

    Google Scholar 

  • Vasco, C., Torres, B., Pacheco, P. & Griess, V. The socioeconomic determinants of legal and illegal smallholder logging: Evidence from the Ecuadorian Amazon. For. Policy Econ. 78, 133–140 (2017).

    Google Scholar 

  • van der Ploeg, J., van Weerd, M., Masipiqueña, A. B. & Persoon, G. A. Illegal logging in the Northern Sierra Madre Natural Park, the Philippines. Conserv. Soc. 9, 202–215 (2011).

    Google Scholar 

  • Liu, D. S., Iverson, L. R. & Brown, S. Rates and patterns of deforestation in the Philippines: Application of geographic information system analysis. For. Ecol. Manag. 57, 1–16 (1993).

    Google Scholar 

  • Boquet, Y. Environmental challenges in the Philippines. In The Philippine Archipelago (ed. Boquet, Y.) 779–829 (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-51926-5_22.

    Chapter 

    Google Scholar 

  • MAGAP. ATPA: Reconversión Agro productiva Sostenible en la Amazonía Ecuatoriana (2014).

  • Jones, K. W. et al. Forest conservation incentives and deforestation in the Ecuadorian Amazon. Environ. Conserv. 44, 56–65 (2017).

    Google Scholar 

  • Lindsey, P. A. et al. Underperformance of African protected area networks and the case for new conservation models: Insights from Zambia. PLoS One 9, e94109 (2014).

    ADS 

    Google Scholar 

  • Fischer, R. et al. Effectiveness of policy instrument mixes for forest conservation in the tropics – a stakeholder perspective from Ecuador, the Philippines and Zambia. Land Use Policy https://doi.org/10.1016/j.landusepol.2023.106546 (2022).

    Article 

    Google Scholar 

  • Gurney, G. G. et al. Biodiversity needs every tool in the box: Use OECMs. Nature 595, 646–649 (2021).

    ADS 
    CAS 

    Google Scholar 

  • Maxwell, S. L. et al. Area-based conservation in the twenty-first century. Nature 586, 217–227 (2020).

    ADS 
    CAS 

    Google Scholar 

  • Priebe, J. et al. Transformative change in context—Stakeholders’ understandings of leverage at the forest–climate nexus. Sustain. Sci. 17, 1921–1938 (2022).

    Google Scholar 

  • Höhl, M. et al. Forest landscape restoration—What generates failure and success?. Forests 11, 938 (2020).

    Google Scholar 

  • Köthke, M., Ahimbisibwe, V. & Lippe, M. The evidence base on the environmental, economic and social outcomes of agroforestry is patchy—An evidence review map. Front. Environ. Sci. https://doi.org/10.3389/fenvs.2022.925477 (2022).

    Article 

    Google Scholar 

  • Fischer, R., Giessen, L. & Günter, S. Governance effects on deforestation in the tropics: A review of the evidence. Environ. Sci. Policy 105, 84–101 (2020).

    Google Scholar 

  • Bare, M., Kauffman, C. & Miller, D. C. Assessing the impact of international conservation aid on deforestation in sub-Saharan Africa. Environ. Res. Lett. 10, 125010 (2015).

    ADS 

    Google Scholar 

  • Vuohelainen, A. J., Coad, L., Marthews, T. R., Malhi, Y. & Killeen, T. J. The effectiveness of contrasting protected areas in preventing deforestation in Madre de Dios. Peru. Environ. Manag. 50, 645–663 (2012).

    ADS 

    Google Scholar 

  • Hull, V. & Liu, J. Telecoupling: A new frontier for global sustainability. Ecol. Soc. 23, 41 (2018).

    Google Scholar 

  • Aitchison, J. The statistical analysis of compositional data. J. Roy. Stat. Soc. 44, 139–160 (1982).

    MathSciNet 
    MATH 

    Google Scholar 

  • Norman, G. Likert scales, levels of measurement and the “laws” of statistics. Adv. Health Sci. Educ. 15, 625–632 (2010).

    Google Scholar 

  • Day, M., Gumbo, D., Moombe, K. B., Wijaya, A. & Sunderland, T. Zambia Country Profile: Monitoring, Reporting and Verification for REDD+ Vol. 113 (CIFOR, 2014).

    Google Scholar 

  • Piotrowski, M. Nearing the tipping point. Drivers of Deforestation in the Amazon Region (2019).

  • Sarker, P. K., Fischer, R., Tamayo, F., Navarrete, B. T. & Günter, S. Analyzing forest policy mixes based on the coherence of policies and the consistency of legislative policy instruments: A case study from Ecuador. For. Policy Econ. 144, 102838 (2022).

    Google Scholar 

  • Likert, R. A technique for the measurement of attitudes. Arch. Psychol. 22(140), 55–55 (1932).

    Google Scholar 

  • Altinsoy, M. et al. Ambulatory ECG monitoring for syncope and collapse in United States, Europe, and Japan: The patients’ viewpoint. J. Arrhythm. 37, 1023–1030 (2021).

    Google Scholar 

  • R Core Team. R: A language and environment for statistical computing. https://www.R-project.org/. (R Foundation for Statistical Computing, Vienna, Austria, 2022).

  • Kassambara, A. rstatix: Pipe-friendly framework for basic statistical tests. R package version 0.7.0 (2021).

  • Kassambara, A. & Mundt, F. factoextra: Extract and visualize the results of multivariate data analyses. R package version 1.0.7 (2020).

  • Komsta, L. & Novometsky, F. moments: Moments, cumulants, skewness, kurtosis and related tests. R package version 0.14.1 (2022).

  • Zhang, Y., Zhou, M. & Shao, Y. mvnormalTest: Powerful tests for multivariate normality. R package version 1.0.0 (2020).

  • Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package version 0.4.0 (2020).

  • Wickham, H. et al. Welcome to the Tidyverse. JOSS 4, 1686 (2019).

    ADS 

    Google Scholar 

  • Bache, S. M. & Wickham, H. magrittr: A Forward-Pipe Operator for R. R package version 2.0.3 (2022).

  • Ushey, K., Allaire, J., Wickham, H. & Ritchie, G. rstudioapi: Safely Access the RStudio API. R package version 0.13 (2020).

  • Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-24277-4.

    Book 
    MATH 

    Google Scholar 

  • Wilkins, D. treemapify: Draw Treemaps in ‘ggplot2’. R package version 2.5.5 (2021).

  • Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611 (1965).

    MathSciNet 
    MATH 

    Google Scholar 

  • Mardia, K. V. Measures of multivariate skewness and kurtosis with applications. Biometrika 57, 519–530 (1970).

    MathSciNet 
    MATH 

    Google Scholar 

  • Kruskal, W. H. & Wallis, W. A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47, 583–621 (1952).

    MATH 

    Google Scholar 

  • Dunn, O. J. Multiple comparisons using rank sums. Technometrics 6, 241–252 (1964).

    Google Scholar 

  • Conover, W. J. & Iman, R. L. Rank transformations as a bridge between parametric and nonparametric statistics. Am. Stat. 35, 124–129 (1981).

    MATH 

    Google Scholar 

  • Student,. The probable error of a mean. Biometrika 6, 1–25 (1908).

    MATH 

    Google Scholar 

  • Tukey, J. W. Comparing individual means in the analysis of variance. Biometrics 5, 99–114 (1949).

    MathSciNet 
    CAS 

    Google Scholar 

  • Jolliffe, I. T. Principal Component Analysis (Springer, 2002).

    MATH 

    Google Scholar 


  • Source: Ecology - nature.com

    Looking for massive carbon capture

    A simple soil mass correction for a more accurate determination of soil carbon stock changes