in

 Restoration and coral adaptation delay, but do not prevent, climate-driven reef framework erosion of an inshore site in the Florida Keys

  • De Goeij, J. M. et al. Surviving in a marine desert: The sponge loop retains resources within coral reefs. Science 80(342), 108–110 (2013).

    Article 

    Google Scholar 

  • Graham, N. A. J. & Nash, K. L. The importance of structural complexity in coral reef ecosystems. Coral Reefs 32, 315–326 (2013).

    Article 
    ADS 

    Google Scholar 

  • Perry, C. T. et al. Loss of coral reef growth capacity to track future increases in sea level. Nature 558, 396–400 (2018).

    Article 
    ADS 

    Google Scholar 

  • Enochs, I. C. & Manzello, D. P. Responses of cryptofaunal species richness and trophic potential to coral reef habitat degradation. Diversity 4, 94–104 (2012).

    Article 

    Google Scholar 

  • Newman, S. P. et al. Reef flattening effects on total richness and species responses in the Caribbean. J. Anim. Ecol. 84, 1678–1689 (2015).

    Article 

    Google Scholar 

  • Ferrario, F. et al. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nat. Commun. 5, 1–9 (2014).

    Article 

    Google Scholar 

  • Storlazzi, C. D. et al. Rigorously valuing the potential coastal hazard risk reduction provided by coral reef restoration in Florida and Puerto Rico. U.S. Geol. Surv. 2, 1–24 (2021).

    Google Scholar 

  • Cornwall, C. E. et al. Global declines in coral reef calcium carbonate production under ocean acidification and warming. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.2015265118 (2021).

    Article 

    Google Scholar 

  • Ries, J. B., Cohen, A. L. & McCorkle, D. C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37, 1131–1134 (2009).

    Article 
    ADS 

    Google Scholar 

  • Achlatis, M. et al. Sponge bioerosion on changing reefs: Ocean warming poses physiological constraints to the success of a photosymbiotic excavating sponge. Sci. Rep. 7, 1–13 (2017).

    Article 

    Google Scholar 

  • Perry, C. T. & Alvarez-Filip, L. Changing geo-ecological functions of coral reefs in the Anthropocene. Funct. Ecol. 33, 976–988 (2019).

    Google Scholar 

  • Manzello, D. P., Enochs, I. C., Kolodziej, G. & Carlton, R. Recent decade of growth and calcification of Orbicella faveolata in the Florida Keys: An inshore-offshore comparison. Mar. Ecol. Prog. Ser. 521, 81–89 (2015).

    Article 
    ADS 

    Google Scholar 

  • de Bakker, D. M., van Duyl, F. C., Perry, C. T. & Meesters, E. H. Extreme spatial heterogeneity in carbonate accretion potential on a Caribbean fringing reef linked to local human disturbance gradients. Glob. Chang. Biol. 25, 4092–4104 (2019).

    Article 
    ADS 

    Google Scholar 

  • Wisshak, M., Schönberg, C. H. L., Form, A. & Freiwald, A. Ocean acidification accelerates reef bioerosion. PLoS ONE 7, e45124 (2012).

    Article 
    ADS 

    Google Scholar 

  • Webb, A. E. et al. Combined effects of experimental acidification and eutrophication on reef sponge bioerosion rates. Front. Mar. Sci. 4, 311 (2017).

    Article 

    Google Scholar 

  • Perry, C. T. et al. Estimating rates of biologically driven coral reef framework production and erosion: A new census-based carbonate budget methodology and applications to the reefs of Bonaire. Coral Reefs 31, 853–868 (2012).

    Article 
    ADS 

    Google Scholar 

  • Molina-Hernández, A., González-Barrios, F. J., Perry, C. T. & Álvarez-Filip, L. Two decades of carbonate budget change on shifted coral reef assemblages: Are these reefs being locked into low net budget states?: Caribbean reefs carbonate budget trends. Proc. R. Soc. B Biol. Sci. 287, 20202305 (2020).

    Article 

    Google Scholar 

  • Toth, L. T., Courtney, T. A., Colella, M. A., Kupfner, S. A. & Robert, J. The past, present, and future of coral reef growth in the Florida Keys. Glob. Change Biol. 28(17), 5294–5309. https://doi.org/10.1111/gcb.16295 (2022).

    Article 

    Google Scholar 

  • Perry, C. T. et al. Caribbean-wide decline in carbonate production threatens coral reef growth. Nat. Commun. 4, 1402–1407 (2013).

    Article 
    ADS 

    Google Scholar 

  • Enochs, I. C. et al. Ocean acidification enhances the bioerosion of a common coral reef sponge: Implications for the persistence of the Florida Reef Tract. Bull. Mar. Sci. 91, 271–290 (2015).

    Article 

    Google Scholar 

  • Bellwood, D. R. et al. Coral reef conservation in the Anthropocene: Confronting spatial mismatches and prioritizing functions. Biol. Conserv. 236, 604–615 (2019).

    Article 

    Google Scholar 

  • van Hooidonk, R., Maynard, J. A., Liu, Y. & Lee, S. K. Downscaled projections of Caribbean coral bleaching that can inform conservation planning. Glob. Chang. Biol. 21, 3389–3401 (2015).

    Article 
    ADS 

    Google Scholar 

  • Pandolfi, J. M., Connolly, S. R., Marshall, D. J. & Cohen, A. L. Projecting coral reef futures under global warming and ocean acidification. Science 80(333), 418 (2011).

    Article 
    ADS 

    Google Scholar 

  • Teneva, L. et al. Predicting coral bleaching hotspots: The role of regional variability in thermal stress and potential adaptation rates. Coral Reefs 31, 1–12 (2012).

    Article 
    ADS 

    Google Scholar 

  • Albright, R., Langdon, C. & Anthony, K. R. N. Dynamics of seawater carbonate chemistry, production, and calcification of a coral reef flat, central great Barrier Reef. Biogeosciences 10, 6747–6758 (2013).

    Article 
    ADS 

    Google Scholar 

  • Van Hooidonk, R., Maynard, J. A., Manzello, D. & Planes, S. Opposite latitudinal gradients in projected ocean acidification and bleaching impacts on coral reefs. Glob. Chang. Biol. 20, 103–112 (2014).

    Article 
    ADS 

    Google Scholar 

  • Van Hooidonk, R. et al. Local-scale projections of coral reef futures and implications of the paris agreement. Sci. Rep. 6, 1–8 (2016).

    Google Scholar 

  • Lee, J.-Y. et al. (2021) Future global climate: Scenario-based projections and near-term information supplementary material climate change 2021: the physical science basis. Contribution of working group i to the sixth assessment report of the intergovernmental panel on climate change doi:https://doi.org/10.1017/9781009157896.006

  • McCulloch, M., Falter, J., Trotter, J. & Montagna, P. Coral resilience to ocean acidification and global warming through pH up-regulation. Nat. Clim. Chang. 2, 623–627 (2012).

    Article 
    ADS 

    Google Scholar 

  • Okazaki, R. R. et al. Species-specific responses to climate change and community composition determine future calcification rates of Florida Keys reefs. Glob. Chang. Biol. 23, 1023–1035 (2017).

    Article 
    ADS 

    Google Scholar 

  • Kornder, N. A., Riegl, B. M. & Figueiredo, J. Thresholds and drivers of coral calcification responses to climate change. Glob. Chang. Biol. 24, 5084–5095 (2018).

    Article 
    ADS 

    Google Scholar 

  • Van Hooidonk, R., Maynard, J. A. & Planes, S. Temporary refugia for coral reefs in a warming world. Nat. Clim. Chang. 3, 508–511 (2013).

    Article 
    ADS 

    Google Scholar 

  • Logan, C. A., Dunne, J. P., Eakin, C. M. & Donner, S. D. Incorporating adaptive responses into future projections of coral bleaching. Glob. Chang. Biol. 20, 125–139 (2014).

    Article 
    ADS 

    Google Scholar 

  • Kennedy, E. V. et al. Avoiding coral reef functional collapse requires local and global action. Curr. Biol. 23, 912–918 (2013).

    Article 

    Google Scholar 

  • Ruzicka, R. R. et al. Temporal changes in benthic assemblages on Florida Keys reefs 11 years after the 1997/1998 El Niño. Mar. Ecol. Prog. Ser. 489, 125–141 (2013).

    Article 
    ADS 

    Google Scholar 

  • Manzello, D. P., Enochs, I. C., Kolodziej, G., Carlton, R. & Valentino, L. Resilience in carbonate production despite three coral bleaching events in 5 years on an inshore patch reef in the Florida Keys. Mar. Biol. 165, 1–11 (2018).

    Article 

    Google Scholar 

  • Gintert, B. E. et al. Marked annual coral bleaching resilience of an inshore patch reef in the Florida Keys: A nugget of hope, aberrance, or last man standing?. Coral Reefs 37, 533–547 (2018).

    Article 
    ADS 

    Google Scholar 

  • Maynard, J. A., Anthony, K. R. N., Marshall, P. A. & Masiri, I. Major bleaching events can lead to increased thermal tolerance in corals. Mar. Biol. 155, 173–182 (2008).

    Article 

    Google Scholar 

  • Sampayo, E. M., Ridgway, T., Bongaerts, P. & Hoegh-Guldberg, O. Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc. Natl. Acad. Sci. U. S. A. 105, 10444–10449 (2008).

    Article 
    ADS 

    Google Scholar 

  • Silverstein, R. N., Correa, A. M. S. & Baker, A. C. Specificity is rarely absolute in coral–algal symbiosis: Implications for coral response to climate change. Proc. R. Soc. B Biol. Sci. 279, 2609–2618 (2012).

    Article 

    Google Scholar 

  • Barshis, D. J. et al. Genomic basis for coral resilience to climate change. Proc. Natl. Acad. Sci. U. S. A. 110, 1387–1392 (2013).

    Article 
    ADS 

    Google Scholar 

  • Voolstra, C. R. et al. Rapid evolution of coral proteins responsible for interaction with the environment. PLoS ONE 6(5), e20392 (2011).

    Article 
    ADS 

    Google Scholar 

  • Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).

    Article 
    ADS 

    Google Scholar 

  • Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 80(344), 895 (2014).

    Article 
    ADS 

    Google Scholar 

  • Tribollet, A., Chauvin, A. & Cuet, P. Carbonate dissolution by reef microbial borers: A biogeological process producing alkalinity under different pCO 2 conditions. Facies 65, 1–10 (2019).

    Article 

    Google Scholar 

  • Chaves-Fonnegra, A. et al. Bleaching events regulate shifts from corals to excavating sponges in algae-dominated reefs. Glob. Chang. Biol. 24, 773–785 (2018).

    Article 
    ADS 

    Google Scholar 

  • Enochs, I. C. et al. Upwelling and the persistence of coral-reef frameworks in the eastern tropical Pacific. Ecol. Monogr. 91, 1–16 (2021).

    Article 

    Google Scholar 

  • Van Westen, R. M. & Dijkstra, H. A. Ocean eddies strongly affect global mean sea-level projections. Sci. Adv. 7, 1–12 (2021).

    Google Scholar 

  • DeMerlis, A. et al. Pre-exposure to a variable temperature treatment improves the response of Acropora cervicornis to acute thermal stress. Coral Reefs https://doi.org/10.1007/s00338-022-02232-z (2022).

    Article 

    Google Scholar 

  • Webb, A. E. et al. Quantifying functional consequences of habitat degradation on a Caribbean coral reef. Biogeosciences 18, 6501–6516 (2021).

    Article 
    ADS 

    Google Scholar 

  • Silbiger, N. J. et al. Nutrient pollution disrupts key ecosystem functions on coral reefs. Proc. R. Soc. B Biol. Sci. 285, 2–10 (2018).

    Google Scholar 

  • DeCarlo, T. M. et al. Coral macrobioerosion is accelerated by ocean acidification and nutrients. Geology 43, 7–10 (2015).

    Article 
    ADS 

    Google Scholar 

  • Wooldridge, S. A. Water quality and coral bleaching thresholds: Formalising the linkage for the inshore reefs of the Great Barrier Reef. Australia. Mar. Pollut. Bull. 58, 745–751 (2009).

    Article 

    Google Scholar 

  • Eyring, V. et al. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. https://doi.org/10.5194/gmd-9-1937-2016 (2016).

  • O’Neill, B. C., Kriegler, E., Riahi, K. & Ebi, K. L. A new scenario framework for climate change research : The concept of shared socioeconomic pathways. Clim. Change https://doi.org/10.1007/s10584-013-0905-2 (2014).

    Article 

    Google Scholar 

  • O’Neill, B. C. et al. The scenario model intercomparison project ( ScenarioMIP ) for CMIP6. Geosci. Model Dev. 9(9), 3461–3482 (2018).

    Article 
    ADS 

    Google Scholar 

  • Towle, E. K. et al. (2021) National coral reef monitoring plan.

  • Kuffner, I. B., Hickey, T. D. & Morrison, J. M. Calcification rates of the massive coral Siderastrea siderea and crustose coralline algae along the Florida Keys (USA) outer-reef tract. Coral Reefs 32, 987–997 (2013).

    Article 
    ADS 

    Google Scholar 

  • Manzello, D. P., Enochs, I. C., Kolodziej, G. & Carlton, R. Coral growth patterns of Montastraea cavernosa and Porites astreoides in the Florida Keys: The importance of thermal stress and inimical waters. J. Exp. Mar. Bio. Ecol. 471, 198–207 (2015).

    Article 

    Google Scholar 

  • Gattuso, J.P. et al. (2015) Package ‘ seacarb ’

  • Donner, S. D., Skirving, W. J., Little, C. M., Oppenheimer, M. & Hoegh-Gulberg, O. Global assessment of coral bleaching and required rates of adaptation under climate change. Glob. Chang. Biol. 11, 2251–2265 (2005).

    Article 
    ADS 

    Google Scholar 

  • van Hooidonk, R. & Huber, M. Quantifying the quality of coral bleaching predictions. Coral Reefs 28, 579–587 (2009).

    Article 
    ADS 

    Google Scholar 

  • Yee, S. H. & Barron, M. G. Predicting coral bleaching in response to environmental stressors using 8 years of global-scale data. Environ. Monit. Assess. 161, 423–438 (2010).

    Article 

    Google Scholar 

  • Liu, G., Strong, A. E. & Skirving, W. Remote sensing of sea surface temperatures during 2002 barrier reef coral bleaching (Eos, Washington, DC, 2003).

    Book 

    Google Scholar 

  • van Hooidonk, R. et al. Projections of future coral bleaching conditions using IPCC CMIP6 models: Climate policy implications, management applications, and Regional Seas summaries. (2020).

  • Kinsey, D. W. & Hopley, D. The significance of coral reefs as global carbon sinks-response to Greenhouse. Glob. Planet. Change 3, 363–377 (1991).

    Article 
    ADS 

    Google Scholar 

  • van Westen, R. M. et al. Ocean model resolution dependence of Caribbean sea-level projections. Sci. Rep. 10, 1–11 (2020).

    Google Scholar 


  • Source: Ecology - nature.com

    Ian Hutchinson: A lifetime probing plasma, on Earth and in space

    New MIT internships expand research opportunities in Africa