Chakraborty, A. & Jones, T. E. in Natural Heritage of Japan Geoheritage, Geoparks and Geotourism (Conservation and Management Series) (eds Chakraborty, A. et al.) Ch. 16 (Springer, 2018).
Nakamura, K. Possible nascent trench along the eastern Japan Sea as the convergent boundary between Eurasian and North American plates (in Japanese). Bull. Earthq. Res. Inst. 58, 711–722 (1983).
Seno, T. Is northern Honshu a microplate? Tectonophysics 115, 177–196 (1985).
Google Scholar
Ogawa, Y., Takami, Y. & Takazawa, S. in Formation and Applications of the Sedimentary Record in Arc Collision Zones Vol. 436 (eds Draut, A. E. at al.) 155–170 (Geological Society of America, 2008).
Tsuya, H. & Morimoto, R. Types of volcanic eruptions in Japan (in Japanese). Bull. Volcanol. 26, 209–222 (1963).
Google Scholar
Aoki, Y., Tsunematsu, K. & Yoshimoto, M. Recent progress of geophysical and geological studies of Mt. Fuji Volcano, Japan. Earth Sci. Rev. 194, 264–282 (2019).
Google Scholar
Tsuchi, R. Geology and groundwater of Mt. Fuji, Japan (in Japanese). J. Geogr. 126, 33–42 (2017).
Google Scholar
Vittecoq, B., Reninger, P.-A., Lacquement, F., Martelet, G. & Violette, S. Hydrogeological conceptual model of andesitic watersheds revealed by high-resolution heliborne geophysics. Hydrol. Earth Sys. Sci. 23, 2321–2338 (2019).
Google Scholar
Yamamoto, S. Hydrologic study of volcano Fuji and its adjacent areas (in Japanese). Geogr. Rev. Jpn 43, 267–184 (1970).
Google Scholar
Yamamoto, T. & Nakada, S. in Volcanic Hazards, Risks, and Disasters (eds Shroder, J. F. & Papale, P.) 355–376 (Elsevier, 2015).
Hasegawa, A. et al. Plate subduction, and generation of earthquakes and magmas in Japan as inferred from seismic observations: an overview. Gondwana Res. 16, 370–400 (2009).
Google Scholar
Kashiwagi, H. & Nakajima, J. Three‐dimensional seismic attenuation structure of central Japan and deep sources of arc magmatism. Geophys. Res. Lett. 46, 13746–13755 (2019).
Google Scholar
Obrochta, S. P. et al. Mt. Fuji Holocene eruption history reconstructed from proximal lake sediments and high-density radiocarbon dating. Quat. Sci. Rev. 200, 395–405 (2018).
Google Scholar
Tosaki, Y. & Asai, K. Groundwater ages in Mt. Fuji (in Japanese). J. Geogr. 126, 89–104 (2017).
Google Scholar
Imtiaz, M. et al. Vanadium, recent advancements and research prospects: a review. Environ. Int. 80, 79–88 (2015).
Google Scholar
Koshimizu, S., & Tomura, K. (2000). Geochemical behavior of trace vanadium in the spring, groundwater and lake water at the foot of Mt. Fuji, Central Japan. In K. Sato & Y. Iwasa (Eds.), Groundwater Updates. Springer, Tokyo. 171-176. https://doi.org/10.1007/978-4-431-68442-8_29
Ono, M. et al. Regional groundwater flow system in a stratovolcano adjacent to a coastal area: a case study of Mt. Fuji and Suruga Bay, Japan. Hydrogeol. J. 27, 717–730 (2019).
Google Scholar
UNESCO Fujisan, Sacred Place and Source of Artistic Inspiration (World Heritage Convention, 2013); https://whc.unesco.org/en/list/1418
Nationally Designated Cultural Properties Database (in Japanese) (Agency of Cultural Affairs Japan, 2020); https://kunishitei.bunka.go.jp/bsys/index
Showa’s 100 Famous Waters of Japan (Ministry of the Environment Japan (MOEJ), 1985); https://www.env.go.jp/water/meisui/
Heisei’s 100 Famous Waters of Japan (MOEJ, 2009): https://www.env.go.jp/water/meisui/
An Overview of the Bottled Water Market in Japan (Frost & Sullivan, 2016).
Fujiyoshida Mineral Water Conservation Association FMWCA Regulations (in Japanese) (Mt. Fuji Springs Inc., 2016); http://fujiyoshida-hozen.org/aboutwater/
Adachi, Y. et al. The physiological effects of the undercurrent water from Mt. Fuji on type 2 diabetic KK-Ay mice. Biomed. Res. Trace Elem. 15, 76–78 (2004).
Google Scholar
Isogai, A., Kanada, R., Iawata, H. & Sudo, S. The influence of vanadium on the components of hineka (in Japanese). J. Brew. Soc. Jpn 107, 443–450 (2012).
Google Scholar
Tamada, Y., Tokui, M., Yamashita, N., Kubodera, T. & Akashi, T. Analyzing the relationship between the inorganic element profile of sake dilution water and dimethyl trisulfide formation using multi-element profiling. J. Biosci. Bioeng. 127, 710–713 (2019).
Google Scholar
London Sake Challenge 2018: Awarded Sake (Sake Somelier Association (SSA), 2018); https://londonsakechallenge.com/awarded-sake-2019/
London Sake Challenge 2019: Awarded Sake (SSA, 2019); https://londonsakechallenge.com/awarded-sake-2019/
Yasuhara, M., Hayashi, T. & Asai, K. Overview of the special issue “Groundwater in Mt. Fuji”. J. Geogr. 126, 25–27 (2017).
Google Scholar
Yasuhara, M., Hayashi, T., Asai, K., Uchiyama, M. & Nakamura, T. Overview of the special issue “Groundwater in Mt. Fuji (Part 2)”. J. Geogr. 129, 657–660 (2020).
Google Scholar
Gmati, S., Tase, N., Tsujimura, M. & Tosaki, Y. Aquifers interaction in the southwestern foot of Mt. Fuji, Japan, examined through hydrochemistry and statistical analyses. Hydrol. Res. Lett. 5, 58–63 (2011).
Google Scholar
Ikeda, K. Water-sediments interaction of salinized groundwater, and its chemical compositions in coastal areas (in Japanese). Jpn. J. Limnol. 46, 303–314 (1985).
Google Scholar
Kato, K. et al. Unveiled groundwater flushing from the deep seafloor in Suruga Bay. Limnology https://doi.org/10.1007/s10201-014-0445-0 (2015).
Segawa, T. et al. Microbes in groundwater of a volcanic mountain, Mt. Fuji; 16S rDNA phylogenetic analysis as a possible indicator for the transport routes of groundwater. Geomicrobiol. J. 32, 677–688 (2015).
Google Scholar
Sugiyama, A., Masuda, S., Nagaosa, K., Tsujimura, M. & Kato, K. Tracking the direct impact of rainfall on groundwater at Mt. Fuji by multiple analyses including microbial DNA. Biogeosciences 15, 721–732 (2018).
Google Scholar
Yasuhara, M., Kazahaya, K. & Marui, A. in Fuji Volcano (eds Aramaki, S. et al.) 389–405 (Yamanashi Institute of Environmental Sciences, 2007).
Tsuchi, R. in Fuji Volcano (eds Aramaki, S. et al.) 375–387 (Yamanashi Institute of Environmental Sciences, 2007).
Takada, A., Yamamoto, T., Ishizuka, Y. & Nakano, S. in Miscellaneous Map Series No. 12, 56 (Geological Survey of Japan (GSJ), National Institute of Advanced Industrial Science and Technology (AIST), 2016).
Uchiyama, T. Hydrogeological structure and hydrological characterization in the northern foot area of Fuji volcano, central Japan (in Japanese). J. Geogr. 129, 697–724 (2020).
Google Scholar
Ikawa, R. et al. in S-5: Seamless Geoinformation of Coastal Zone “Northern Coastal Zone of Suruga Bay” (GSJ, AIST, 2016).
AIST 2014 Marine Geological and Environmental Survey Confirmation Technology Development Results Report (in Japanese) (AIST, 2015).
AIST 2015 Marine Geological and Environmental Survey Confirmation Technology Development Results Report (in Japanese) (AIST, 2016).
Lin, A., Iida, K. & Tanaka, H. On-land active thrust faults of the Nankai–Suruga subduction zone: the Fujikawa-kako Fault Zone, central Japan. Tectonophysics 601, 1–19 (2013).
Google Scholar
Fujita, E. et al. Stress field change around the Mount Fuji volcano magma system caused by the Tohoku megathrust earthquake, Japan. Bull. Volcanol. 75, 679 (2013).
Google Scholar
Kano, K.-I., Odawara, K., Yamamoto, G. & Ito, T. Tectonics of the Fujikawa-kako Fault Zone around the Hoshiyama Hills, central Japan, since 1 Ma. Geosci. Rep. Shizuoka Univ. 46, 19–49 (2019).
Schilling, O. S., Cook, P. G. & Brunner, P. Beyond classical observations in hydrogeology: the advantages of including exchange flux, temperature, tracer concentration, residence time and soil moisture observations in groundwater model calibration. Rev. Geophys. 57, 146–182 (2019).
Google Scholar
Schilling, O. S. et al. Quantifying groundwater recharge dynamics and unsaturated zone processes in snow-dominated catchments via on-site dissolved gas analysis. Water Resour. Res. 57, e2020WR028479 (2021).
Google Scholar
National Hydrological Environment Database of Japan (GSJ, AIST, 2020).
Hayashi, T. Understanding the groundwater flow system at the northern part of Mt. Fuji: current issues and prospects (in Japanese). J. Geogr. 129, 677–695 (2020).
Google Scholar
Yasuhara, M., Marui, A., & Kazahaya, K. (1997). Stable isotopic composition of groundwater from Mt. Yatsugatake and Mt. Fuji, Japan. Proceedings of the Rabat Symposium. Rabat Symposium, April 1997, Wallingford, UK.
Jasechko, S. Global isotope hydrogeology—review. Rev. Geophys. https://doi.org/10.1029/2018RG000627 (2019).
Yaguchi, M., Muramatsu, Y., Chiba, H., Okumura, F. & Ohba, T. The origin and hydrochemistry of deep well waters from the northern foot of Mt. Fuji, central Japan. Geochem. J. 50, 227–239 (2016).
Google Scholar
Aizawa, K. et al. Gas pathways and remotely triggered earthquakes beneath Mount Fuji, Japan. Geology 44, 127–130 (2016).
Google Scholar
Kipfer, R. et al. Injection of mantle type helium into Lake Van (Turkey): the clue for quantifying deep water renewal. Earth Planet. Sci. Lett. 125, 357–370 (1994).
Google Scholar
Kipfer, R., Aeschbach-Hertig, W., Peeters, F. & Stute, M. in Noble Gases in Geochemistry and Cosmochemistry Reviews in Mineralogy and Geochemistry Vol. 47 (eds Porcelli, D. et al.) Ch. 14 (De Gruyter, 2002).
Sano, Y. & Fischer, T. P. in The Noble Gases as Geochemical Tracers: Advances in isotope geochemistry (ed. Burnard, O.) Ch. 10 (Springer, 2013).
Sano, Y. & Wakita, H. Distribution of 3He/4He ratios and its implications for geotectonic structure of the Japanese Islands. J. Geophys. Res. 90, 8729–8741 (1985).
Google Scholar
Tomonaga, Y. et al. Fluid dynamics along the Nankai Trough: He isotopes reveal direct seafloor mantle-fluid emission in the Kumano Basin (Southwest Japan). ACS Earth Space Chem. 4, 2015–2112 (2020).
Google Scholar
Chen, A. et al. Mantle fluids associated with crustal-scale faulting in a continental subduction setting, Taiwan. Sci Rep. 9, 10805 (2019).
Google Scholar
Crossey, L. J. et al. Continental smokers couple mantle degassing and distinctive microbiology within continents. Earth Planet. Sci. Lett. 435, 22–30 (2016).
Google Scholar
Crossey, L. J. et al. Degassing of mantle-derived CO2 and He from springs in the southern Colorado Plateau region—neotectonic connections and implications for groundwater systems. Geol. Soc. Am. Bull. 121, 1034–1053 (2009).
Google Scholar
Kusuda, C., Iwamori, H., Nakamura, H., Kazahaya, K. & Morikawa, N. Arima hot spring waters as a deep-seated brine from subducting slab. Earth Planets Space 66, 119 (2014).
Google Scholar
Sano, Y., Kameda, A., Takahata, N., Yamamoto, J. & Nakajima, J. Tracing extinct spreading center in SW Japan by helium-3 emanation. Chem. Geol. 266, 50–56 (2009).
Google Scholar
Sano, Y. et al. Groundwater helium anomaly reflects strain change during the 2016 Kumamoto earthquake in Southwest Japan. Sci. Rep. 6, 37939 (2016).
Google Scholar
Peeters, F. et al. Improving noble gas based paleoclimate reconstruction and groundwater dating using 20Ne/22Ne ratios. Geochim. Cosmochim. Acta 67, 587–600 (2002).
Google Scholar
Reimann, C. & de Caritat, P. Chemical Elements in the Environment 398 (Springer, 1998).
Hamada, T. in Vanadium in the Environment. Part 1: Chemistry and Biochemistry Advances in Environmental Sciences and Technology Vol. 10 (ed. Nriagu, J. O.) 97–123 (Wiley & Sons, 1998).
Koshimizu, S. & Kyotani, T. Geochemical behaviors of multi-elements in water samples from the Fuji and Sagami Rivers, Central Japan, using vanadium as an effective indicator. Jpn J. Limnol. 63, 113–124 (2002).
Google Scholar
Sohrin, R. in Green Science and Technology (eds Park, E. Y. et al.) Ch. 7 (CRC, 2019).
Wehrli, B. & Stumm, W. Oxygenation of vanadyl(IV). Effect of coordinated surface hydroxyl groups and hydroxide ion. Langmuir 4, 753–758 (1988).
Google Scholar
Wright, M. T. & Belitz, K. Factors controlling the regional distribution of vanadium in groundwater. Ground Water 48, 515–525 (2010).
Google Scholar
Deverel, S. J., Goldberg, S. & Fujii, R. in Agricultural salinity assessment and management (eds W.W. Wallender & K.K. Tanji) 89–137 (American Society of Civil Engineers, 2012).
Wehrli, B. & Stumm, W. Vanadyl in natural waters: adsorption and hydrolysis promote oxygenation. Geochim. Cosmochim. Acta 53, 69–77 (1989).
Google Scholar
Chen, G. & Liu, H. Understanding the reduction kinetics of aqueous vanadium(V) and transformation products using rotating ring-disk electrodes. Environ. Sci. Technol. 51, 11643–11651 (2017).
Google Scholar
Telfeyan, K., Johannesson, K. H., Mohajerin, T. J. & Palmore, C. D. Vanadium geochemistry along groundwater flow paths in contrasting aquifers of the United States: Carrizo Sand (Texas) and Oasis Valley (Nevada) aquifers. Chem. Geol. 410, 63–78 (2015).
Google Scholar
Kan, K. et al. Archaea in Yellowstone Lake. ISME J. 5, 1784–1795 (2011).
Google Scholar
Wong, H. L. et al. Dynamics of archaea at fine spatial scales in Shark Bay mat microbiomes. Sci. Rep. 7, 46160 (2017).
Google Scholar
Ikeda, K. A study on chemical characteristics of ground water in Fuji area (in Japanese). J. Groundw. Hydrol. 24, 77–93 (1982).
Aizawa, K. et al. Hydrothermal system beneath Mt. Fuji volcano inferred from magnetotellurics and electric self-potential. Earth Planet. Sci. Lett. 235, 343–355 (2005).
Google Scholar
Yamamoto, T., Takada, A., Ishizuka, Y., Miyaji, N. & Tajima, Y. Basaltic pyroclastic flows of Fuji volcano, Japan: characteristics of the deposits and their origin. Bull. Volcanol. 67, 622–633 (2005).
Google Scholar
Yamamoto, T., Takada, A., Ishizuka, Y. & Nakano, S. Chronology of the products of Fuji volcano based on new radiometoric carbon ages (in Japanese). Bull. Volcanol. 50, 53–70 (2005).
Google Scholar
Aizawa, K., Yoshimura, R. & Oshiman, N. Splitting of the Philippine Sea Plate and a magma chamber beneath Mt. Fuji. Geophys. Res. Lett. 31, L09603 (2004).
Google Scholar
Nakamura, H., Iwamori, H. & Kimura, J.-I. Geochemical evidence for enhanced fluid flux due to overlapping subducting plates. Nat. Geosci. 1, 380–384 (2008).
Google Scholar
Kaneko, T., Yasuda, A., Fujii, T. & Yoshimoto, M. Crypto-magma chambers beneath Mt. Fuji. J. Volcanol. Geotherm. Res. 193, 161–170 (2010).
Google Scholar
Tsuya, H., Machida, H., & Shimozuru, D. (1988). Geology of volcano Mt. Fuji. Explanatory text of the geologic map of Mt. Fuji (scale 1:50,000; second printing). Geological Survey of Japan (GSJ), Tsukuba, Japan.
Yoshimoto, M. et al. Evolution of Mount Fuji, Japan: inference from drilling into the subaerial oldest volcano, pre-Komitake. Isl. Arc. 19, 470–488 (2010).
Google Scholar
Shikazono, N., Arakawa, T. & Nakano, T. Groundwater quality, flow, and nitrogen pollution at the southern foot of Mt. Fuji (in Japanese). J. Geogr. 123, 323–342 (2014).
Google Scholar
Tosaki, Y., Tase, N., Sasa, K., Takahashi, T. & Nagashima, Y. Estimation of groundwater residence time using the 36Cl bomb pulse. Groundwater 49, 891–902 (2011).
Google Scholar
Yamamoto, T. Geology of the Southwestern Part of Fuji Volcano (in Japanese) 27 (GSJ, AIST, 2014).
Tsuya, H. Geology of volcano Mt. Fuji. Explanatory text of the geologic map of Mt. Fuji (scale 1:50,000). Geological Survey of Japan, Tsukuba, Japan. (1968).
Tomiyama, S., Ii, H., Miyaike, S., Hattori, R. & Ito, Y. Estimation of the sources and flow system of groundwater in Fuji-Gotenba area by stable isotopic analysis and groundwater flow simulation (in Japanese). Bunseki Kagaku 58, 865–872 (2009).
Google Scholar
Oguchi, T. & Oguchi, C. T. in Geomorphological Landscapes of the World (ed. Migoń, P.) Ch. 31 (Springer, 2010).
Mean Annual Precipitation from 1981-2010 Recorded at the Four Mt. Fuji Observatories (Mishima, Fuji, Furuseki, Yamanaka) (Japan Meteorological Agency, 2015).
Schilling, O. S., Park, Y.-J., Therrien, R. & Nagare, R. M. Integrated surface and subsurface hydrological modeling with snowmelt and pore water freeze-thaw. Groundwater 57, 63–74 (2018).
Google Scholar
Sakio, H. & Masuzawa, T. Advancing timberline on Mt. Fuji between 1978 and 2018. Plants 9, 1537 (2020).
Google Scholar
Asai, K. & Koshimizu, S. 3H/3He-based groundwater ages for springs located at the foot of Mt. Fuji (in Japanese). J. Groundw. Hydrol. 61, 291–298 (2019).
Google Scholar
Sakai, Y., Shita, K., Koshimizu, S. & Tomura, K. Geochemical study of trace vanadium in water by preconcentrational neutron activation analysis. J. Radioanal. Nucl. Chem. 216, 203–212 (1997).
Google Scholar
Nahar, S. & Zhang, J. Concentration and distribution of organic and inorganic water pollutants in eastern Shizuoka, Japan. Toxicol. Environ. Chem. https://doi.org/10.1080/02772248.2011.610498 (2011).
Kamitani, T., Watanabe, M., Muranaka, Y., Shin, K.-C. & Nakano, T. Geographical characteristics and sources of dissolved ions in groundwater at the southern part of Mt. Fuji (in Japanese). J. Geogr. 126, 43–71 (2017).
Google Scholar
Kawagucci, S. et al. Disturbance of deep-sea environments induced by the M9.0 Tohoku earthquake. Sci Rep. 2, 270 (2012).
Google Scholar
Uchida, N. & Bürgmann, R. A decade of lessons learned from the 2011 Tohoku-Oki earthquake. Rev. Geophys. 59, e2020RG000713 (2021).
Google Scholar
Mahara, Y., Igarashi, T. & Tanaka, Y. Groundwater ages of confined aquifer in Mishima lava flow, Shizuoka (in Japanese). J. Groundw. Hydrol. 35, 201–215 (1993).
Google Scholar
Nakamura, T. et al. Sources of water and nitrate in springs at the northern foot of Mt. Fuji and nitrate loading in the Katsuragawa River (in Japanese). J. Geogr. 126, 73–88 (2017).
Google Scholar
Notsu, K., Mori, T., Sumino, H. & Ohno, M. in Fuji Volcano (eds Aramaki, S. et al.) 173–182 (Yamanashi Institute of Environmental Sciences, 2007).
Ogata, M. & Kobayashi, H. Hydrologic Science Research for the Management and Utilization of Ground Water Resources in the Northern Piedmont Area of Mt. Fuji: Fluorine Ion and Vanadium Contained in Ground Water at the Northern Foot of Mt. Fuji (Yamanashi Industrial Technology Center, 2015).
Ogata, M., Kobayashi, H. & Koshimizu, S. Concentration of fluorine in groundwater and groundwater table at the northern foot of Mt. Fuji (in Japanese). J. Groundw. Hydrol. 56, 35–51 (2014).
Google Scholar
Ohno, M., Sumino, H., Hernandez, P. A., Sato, T. & Nagao, K. Helium isotopes in the Izu Peninsula, Japan: relation of magma and crustal activity. J. Volcanol. Geotherm. Res. 199, 118–126 (2011).
Google Scholar
Okabe, S., Shibasaki, M., Oikawa, T., Kawaguchi, Y. & Nihongi, H. Geochemical studies of spring and lake waters on and around Mt. Fuji (in Japanese). J. Sch. Mar. Sci. Technol. Tokai Univ. 14, 81–105 (1981).
Google Scholar
Ono, M., Ikawa, R., Machida, H. & Marui, A. Distribution of radon concentration in groundwater at the southwestern foot of Mt. Fuji (in Japanese). Radioisotopes 65, 431–439 (2016).
Google Scholar
Tosaki, Y. Estimation of Groundwater Residence Time Using Bomb-Produced Chlorine-36. PhD thesis, Univ. Tsukuba (2008).
Umeda, K., Asamori, K. & Kusano, T. Release of mantle and crustal helium from a fault following an inland earthquake. Appl. Geochem. 37, 134–141 (2013).
Google Scholar
Yamamoto, C. Estimation of Groundwater Flow System Using Multi-tracer Techniques in Mt. Fuji, Japan. (in Japanese) PhD thesis, Univ. Tsukuba (2016).
Yamamoto, S. & Nakamura, T. Visit to valuable water springs (129) valuable water at the northern foot of Mount Fuji (Fuji-Kawaguchiko Town) (in Japanese). J. Groundw. Hydrol. 62, 329–336 (2020).
Google Scholar
Yamamoto, S. et al. Water sources of lake bottom springs in Lake Kawaguchi, northern foot of Mount Fuji, Japan (in Japanese). J. Geogr. 129, 665–676 (2020).
Google Scholar
Yamamoto, S., Nakamura, T. & Uchiyama, T. Newly discovered lake bottom springs from Lake Kawaguchi, the northern foot of Mount Fuji, Japan (in Japanese). J. Jpn Assoc. Hydrol. Sci. 47, 49–59 (2017).
Yamamoto, S., Nakamura, T., Koishikawa, H. & Uchiyama, T. Water quality of shallow groundwater in the southern coast area of Lake Kawaguchi at the northern foot of Mt. Fuji, Yamanashi, Japan (in Japanese). Mt Fuji Res. 11, 1–9 (2017).
Coplen, T. B. Reporting of stable hydrogen, carbon, and oxygen isotopic abundances. Geothermics 66, 273–276 (1994).
Google Scholar
Nimz, G. J. in Isotope Tracers in Catchment Hydrology (eds Kendall, C. & McDonnell, J. J.) Ch. 8 (Elsevier, 1998).
Bullen, T. D. & Kendall, C. in Isotope Tracers in Catchment Hydrology (eds Kendall, C. & McDonnell, J. J.) Ch. 18 (Elsevier, 1998).
Vanadium Pentoxide and Other Inorganic Vanadium Compounds Vol. 29 (WHO, 2001).
Nagai, T., Takahashi, M., Hirahara, Y. & Shuto, K. Sr-Nd isotopic compositions of volcanic rocks from Fuji, Komitake and Ashitaka Volcanoes, Central Japan (in Japanese). Proc. Inst. Nat. Sci. Nihon Univ. 39, 205–215 (2004).
Google Scholar
Hogan, J. F. & Blum, J. D. Tracing hydrologic flow paths in a small forested watershed using variations in 87Sr/86Sr, [Ca]/[Sr], [Ba]/[Sr] and δ18O. Water Resour. Res. 39, 1282 (2003).
Google Scholar
Koshikawa, M. K. et al. Using isotopes to determine the contribution of volcanic ash to Sr and Ca in stream waters and plants in a granite watershed, Mt. Tsukuba, central Japan. Environ. Earth Sci. 75, 501 (2016).
Google Scholar
Graustein, W. C. in Stable Isotopes in Ecological Research Ecological Studies (Analysis and Synthesis) (eds Rundel, JP.W. et al.) Ch. 28 (Springer, 1989).
Cook, P. G. & Böhlke, J.-K. in Environmental Tracers in Subsurface Hydrology (eds Cook, P. G. & Herczeg, A. L.) Ch. 1 (Springer, 2000).
Aeschbach-Hertig, W. & Solomon, D. K. in The Noble Gases as Geochemical Tracers (ed. Burnard, P.) Ch. 5 (Springer, 2013).
Popp, A. L. et al. A framework for untangling transient groundwater mixing and travel times. Water Resour. Res. 57, e2020WR028362 (2021).
Google Scholar
Schilling, O. S. et al. Advancing physically-based flow simulations of alluvial systems through observations of 222Rn, 3H/3He, atmospheric noble gases and the novel 37Ar tracer method. Water Resour. Res. 53, 10465–10490 (2017).
Google Scholar
Tomonaga, Y. et al. Using noble-gas and stable-isotope data to determine groundwater origin and flow regimes: applicatoin to the Ceneri Base Tunnel (Switzerland). J. Hydrol. 545, 395–409 (2017).
Google Scholar
Niu, Y. et al. Noble gas signatures in the island of Maui, Hawaii – characterizing groundwater sources in fractured systems. Water Resour. Res. 53, 3599–3614 (2017).
Google Scholar
Warrier, R. B., Castro, M. C. & Hall, C. M. Recharge and source-water insights from the Galapagos Islands using noble gases and stable isotopes. Water Resour. Res. https://doi.org/10.1029/2011WR010954 (2012).
Schilling, O. S. et al. Buried paleo-channel detection with a groundwater model, tracer-based observations, and spatially varying, preferred anisotropy pilot point calibration. Geophys. Res. Lett. 49, e2022GL098944 (2022).
Google Scholar
Brennwald, M. S., Schmidt, M., Oser, J. & Kipfer, R. A portable and autonomous mass spectrometric system for on-site environmental gas analysis. Environ. Sci. Technol. 50, 13455–12463 (2016).
Google Scholar
Tomonaga, Y. et al. On-line monitoring of the gas composition in the full-scale emplacement experiment at Mont Terri (Switzerland). Appl. Geochem. 100, 234–243 (2019).
Google Scholar
Brennwald, M. S., Tomonaga, Y. & Kipfer, R. Deconvolution and compensation of mass spectrometric overlap interferences with the miniRUEDI portable mass spectrometer. MethodsX 7, 101038 (2020).
Google Scholar
Van Rossum, G. & Drake, F. L. Python 3 Reference Manual (CreateSpace, 2009).
Beyerle, U. et al. A mass spectrometric system for the analysis of noble gases and tritium from water samples. Environ. Sci. Technol. 34, 2042–2050 (2000).
Google Scholar
Clarke, W. B., Jenkins, W. J. & Top, Z. Determination of tritium by mass spectrometric measurement of 3He. Int. J. Appl. Radiat. Isotopes 27, 515–522 (1976).
Google Scholar
Bucci, A., Petrella, E., Celivo, F. & Naclerio, G. Use of molecular approaches in hydrogeological studies: the case of carbonate aquifers in southern Italy. Hydrogeol. J. 25, 1017–1031 (2017).
Google Scholar
Proctor, C. R. et al. Phylogenetic clustering of small low nucleic acid-content bacteria across diverse freshwater ecosystems. ISME J. 12, 1344–1359 (2018).
Google Scholar
Pronk, M., Goldscheider, N. & Zopfi, J. Microbial communities in karst groundwater and their potential use for biomonitoring. Hydrogeol. J. 17, 37–48 (2009).
Google Scholar
Miller, J. B., Frisbee, M. D., Hamilton, T. L. & Murugapiran, S. K. Recharge from glacial meltwater is critical for alpine springs and their microbiomes. Environ. Res. Lett. 16, 064012 (2021).
Google Scholar
Ginn, T. R. et al. in Encyclopedia of Hydrological Sciences (ed. Anderson, M.G.) Ch. 105 (John Wiley & Sons, 2005).
Tufenkji, N. & Emelko, M. B. in Encyclopedia of Environmental Health (ed. Nriagu, J.O.) Vol. 2, 715–726 (Elsevier, 2011).
Nevecherya, I. K., Shestakov, V. M., Mazaev, V. T. & Shlepnina, T. G. Survival rate of pathogenic bacteria and viruses in groundwater. Water Res. 32, 209–214 (2005).
Google Scholar
Franzosa, E. A. et al. Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling. Nature Rev. Microbiol. 13, 360–372 (2015).
Google Scholar
Kimura, H., Ishibashi, J. I., Masuda, H., Kato, K. & Hanada, S. Selective phylogenetic analysis targeting 16S rRNA genes of hyperthermophilic archaea in the deep-subsurface hot biosphere. Appl. Environ. Microbiol. 73, 2110–2117 (2007).
Google Scholar
Somerville, C. C., Knight, I. T., Straube, W. L. & Colwell, R. R. Simple, rapid method for direct isolation of nucleic-acids from aquatic environments. Appl. Environ. Microbiol. 55, 548–554 (1989).
Google Scholar
Takahashi, S., Tomita, J., Nishioka, K., Hisada, T. & Nishijima, M. Development of a prokaryotic universal primer for simultaneous analysis of bacteria and archaea using next-generation sequencing. PLoS ONE https://doi.org/10.1371/journal.pone.0105592 (2014).
Wasimuddin et al. Evaluation of primer pairs for microbiome profiling from soils to humans within the One Health framework. Mol. Ecol. Resour. 20, 1558–1571 (2020).
Google Scholar
Suzuki, Y., Shimizu, H., Kuroda, T., Takada, Y. & Nukazawa, K. Plant debris are hotbeds for pathogenic bacteria on recreational sandy beaches. Sci Rep. 11, 11496 (2021).
Google Scholar
Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).
Google Scholar
Caporaso, J. G. et al. QIIME allows analysis of high- throughput community sequencing data. Nat. Methods 7, 335–336 (2010).
Google Scholar
McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012).
Google Scholar
DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).
Google Scholar
McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
Google Scholar
R: A Language and Environment for Statistical Computing v.3.6.2 (R Foundation for Statistical Computing, 2019).
Porter, K. G. & Feig, Y. S. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25, 943–948 (1980).
Google Scholar
Schilling, O. S. et al. Mt. Fuji hydrogeochemical and microbiological dataset. HydroShare https://doi.org/10.4211/hs.4eac370d12e142b5aa718e5deb57da39 (2022).
Gotelli, N. J. & Chao, A. in Encyclopedia of Biodiversity Vol. 5 (ed. Levin, S. A.) 195–211 (Academic, 2013).
World Imagery (Esri, 2021); https://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9
Elevation Tile Map of Japan (DEM5A; Resolution: 5m) (Geospatial Information Authority of Japan (GSI), 2021).
Chiba, T., Kaneta, S. & Suzuki, Y. in The International Archives of the Photogrammetry Vol. XXXVII Ch. B2 (Remote Sensing and Spatial Information Sciences, 2008).
Air Asia Survey Co. Ltd Red Relief Image Map of Japan (RRIM 10_2016) (GSI, 2016).
Active Fault Database of Japan April 26 2019 edn Disclosure database DB095 (AIST, 2019).
Bird, P. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2001GC000252 (2003).
Van Horne, A., Sato, H. & Ishiyama, T. Evolution of the Sea of Japan back-arc and some unsolved issues. Tectonophysics 710–711, 6–20 (2017).
Google Scholar
Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).
Google Scholar
2019 Coastal Disposal System Evaluation Confirmation Technology Results Report (in Japanese) (AIST, 2019).
Source: Ecology - nature.com