in

Revisiting Mt Fuji’s groundwater origins with helium, vanadium and environmental DNA tracers

  • Chakraborty, A. & Jones, T. E. in Natural Heritage of Japan Geoheritage, Geoparks and Geotourism (Conservation and Management Series) (eds Chakraborty, A. et al.) Ch. 16 (Springer, 2018).

  • Nakamura, K. Possible nascent trench along the eastern Japan Sea as the convergent boundary between Eurasian and North American plates (in Japanese). Bull. Earthq. Res. Inst. 58, 711–722 (1983).

    Google Scholar 

  • Seno, T. Is northern Honshu a microplate? Tectonophysics 115, 177–196 (1985).

    Article 

    Google Scholar 

  • Ogawa, Y., Takami, Y. & Takazawa, S. in Formation and Applications of the Sedimentary Record in Arc Collision Zones Vol. 436 (eds Draut, A. E. at al.) 155–170 (Geological Society of America, 2008).

  • Tsuya, H. & Morimoto, R. Types of volcanic eruptions in Japan (in Japanese). Bull. Volcanol. 26, 209–222 (1963).

    Article 
    CAS 

    Google Scholar 

  • Aoki, Y., Tsunematsu, K. & Yoshimoto, M. Recent progress of geophysical and geological studies of Mt. Fuji Volcano, Japan. Earth Sci. Rev. 194, 264–282 (2019).

    Article 

    Google Scholar 

  • Tsuchi, R. Geology and groundwater of Mt. Fuji, Japan (in Japanese). J. Geogr. 126, 33–42 (2017).

    Article 

    Google Scholar 

  • Vittecoq, B., Reninger, P.-A., Lacquement, F., Martelet, G. & Violette, S. Hydrogeological conceptual model of andesitic watersheds revealed by high-resolution heliborne geophysics. Hydrol. Earth Sys. Sci. 23, 2321–2338 (2019).

    Article 
    CAS 

    Google Scholar 

  • Yamamoto, S. Hydrologic study of volcano Fuji and its adjacent areas (in Japanese). Geogr. Rev. Jpn 43, 267–184 (1970).

    Article 

    Google Scholar 

  • Yamamoto, T. & Nakada, S. in Volcanic Hazards, Risks, and Disasters (eds Shroder, J. F. & Papale, P.) 355–376 (Elsevier, 2015).

  • Hasegawa, A. et al. Plate subduction, and generation of earthquakes and magmas in Japan as inferred from seismic observations: an overview. Gondwana Res. 16, 370–400 (2009).

    Article 

    Google Scholar 

  • Kashiwagi, H. & Nakajima, J. Three‐dimensional seismic attenuation structure of central Japan and deep sources of arc magmatism. Geophys. Res. Lett. 46, 13746–13755 (2019).

    Article 

    Google Scholar 

  • Obrochta, S. P. et al. Mt. Fuji Holocene eruption history reconstructed from proximal lake sediments and high-density radiocarbon dating. Quat. Sci. Rev. 200, 395–405 (2018).

    Article 

    Google Scholar 

  • Tosaki, Y. & Asai, K. Groundwater ages in Mt. Fuji (in Japanese). J. Geogr. 126, 89–104 (2017).

    Article 

    Google Scholar 

  • Imtiaz, M. et al. Vanadium, recent advancements and research prospects: a review. Environ. Int. 80, 79–88 (2015).

    Article 
    CAS 

    Google Scholar 

  • Koshimizu, S., & Tomura, K. (2000). Geochemical behavior of trace vanadium in the spring, groundwater and lake water at the foot of Mt. Fuji, Central Japan. In K. Sato & Y. Iwasa (Eds.), Groundwater Updates. Springer, Tokyo. 171-176. https://doi.org/10.1007/978-4-431-68442-8_29

  • Ono, M. et al. Regional groundwater flow system in a stratovolcano adjacent to a coastal area: a case study of Mt. Fuji and Suruga Bay, Japan. Hydrogeol. J. 27, 717–730 (2019).

    Article 

    Google Scholar 

  • UNESCO Fujisan, Sacred Place and Source of Artistic Inspiration (World Heritage Convention, 2013); https://whc.unesco.org/en/list/1418

  • Nationally Designated Cultural Properties Database (in Japanese) (Agency of Cultural Affairs Japan, 2020); https://kunishitei.bunka.go.jp/bsys/index

  • Showa’s 100 Famous Waters of Japan (Ministry of the Environment Japan (MOEJ), 1985); https://www.env.go.jp/water/meisui/

  • Heisei’s 100 Famous Waters of Japan (MOEJ, 2009): https://www.env.go.jp/water/meisui/

  • An Overview of the Bottled Water Market in Japan (Frost & Sullivan, 2016).

  • Fujiyoshida Mineral Water Conservation Association FMWCA Regulations (in Japanese) (Mt. Fuji Springs Inc., 2016); http://fujiyoshida-hozen.org/aboutwater/

  • Adachi, Y. et al. The physiological effects of the undercurrent water from Mt. Fuji on type 2 diabetic KK-Ay mice. Biomed. Res. Trace Elem. 15, 76–78 (2004).

    CAS 

    Google Scholar 

  • Isogai, A., Kanada, R., Iawata, H. & Sudo, S. The influence of vanadium on the components of hineka (in Japanese). J. Brew. Soc. Jpn 107, 443–450 (2012).

    Article 

    Google Scholar 

  • Tamada, Y., Tokui, M., Yamashita, N., Kubodera, T. & Akashi, T. Analyzing the relationship between the inorganic element profile of sake dilution water and dimethyl trisulfide formation using multi-element profiling. J. Biosci. Bioeng. 127, 710–713 (2019).

    Article 
    CAS 

    Google Scholar 

  • London Sake Challenge 2018: Awarded Sake (Sake Somelier Association (SSA), 2018); https://londonsakechallenge.com/awarded-sake-2019/

  • London Sake Challenge 2019: Awarded Sake (SSA, 2019); https://londonsakechallenge.com/awarded-sake-2019/

  • Yasuhara, M., Hayashi, T. & Asai, K. Overview of the special issue “Groundwater in Mt. Fuji”. J. Geogr. 126, 25–27 (2017).

    Article 

    Google Scholar 

  • Yasuhara, M., Hayashi, T., Asai, K., Uchiyama, M. & Nakamura, T. Overview of the special issue “Groundwater in Mt. Fuji (Part 2)”. J. Geogr. 129, 657–660 (2020).

    Article 

    Google Scholar 

  • Gmati, S., Tase, N., Tsujimura, M. & Tosaki, Y. Aquifers interaction in the southwestern foot of Mt. Fuji, Japan, examined through hydrochemistry and statistical analyses. Hydrol. Res. Lett. 5, 58–63 (2011).

    Article 

    Google Scholar 

  • Ikeda, K. Water-sediments interaction of salinized groundwater, and its chemical compositions in coastal areas (in Japanese). Jpn. J. Limnol. 46, 303–314 (1985).

    Article 
    CAS 

    Google Scholar 

  • Kato, K. et al. Unveiled groundwater flushing from the deep seafloor in Suruga Bay. Limnology https://doi.org/10.1007/s10201-014-0445-0 (2015).

  • Segawa, T. et al. Microbes in groundwater of a volcanic mountain, Mt. Fuji; 16S rDNA phylogenetic analysis as a possible indicator for the transport routes of groundwater. Geomicrobiol. J. 32, 677–688 (2015).

    Article 

    Google Scholar 

  • Sugiyama, A., Masuda, S., Nagaosa, K., Tsujimura, M. & Kato, K. Tracking the direct impact of rainfall on groundwater at Mt. Fuji by multiple analyses including microbial DNA. Biogeosciences 15, 721–732 (2018).

    Article 
    CAS 

    Google Scholar 

  • Yasuhara, M., Kazahaya, K. & Marui, A. in Fuji Volcano (eds Aramaki, S. et al.) 389–405 (Yamanashi Institute of Environmental Sciences, 2007).

  • Tsuchi, R. in Fuji Volcano (eds Aramaki, S. et al.) 375–387 (Yamanashi Institute of Environmental Sciences, 2007).

  • Takada, A., Yamamoto, T., Ishizuka, Y. & Nakano, S. in Miscellaneous Map Series No. 12, 56 (Geological Survey of Japan (GSJ), National Institute of Advanced Industrial Science and Technology (AIST), 2016).

  • Uchiyama, T. Hydrogeological structure and hydrological characterization in the northern foot area of Fuji volcano, central Japan (in Japanese). J. Geogr. 129, 697–724 (2020).

    Article 

    Google Scholar 

  • Ikawa, R. et al. in S-5: Seamless Geoinformation of Coastal Zone “Northern Coastal Zone of Suruga Bay” (GSJ, AIST, 2016).

  • AIST 2014 Marine Geological and Environmental Survey Confirmation Technology Development Results Report (in Japanese) (AIST, 2015).

  • AIST 2015 Marine Geological and Environmental Survey Confirmation Technology Development Results Report (in Japanese) (AIST, 2016).

  • Lin, A., Iida, K. & Tanaka, H. On-land active thrust faults of the Nankai–Suruga subduction zone: the Fujikawa-kako Fault Zone, central Japan. Tectonophysics 601, 1–19 (2013).

    Article 

    Google Scholar 

  • Fujita, E. et al. Stress field change around the Mount Fuji volcano magma system caused by the Tohoku megathrust earthquake, Japan. Bull. Volcanol. 75, 679 (2013).

    Article 

    Google Scholar 

  • Kano, K.-I., Odawara, K., Yamamoto, G. & Ito, T. Tectonics of the Fujikawa-kako Fault Zone around the Hoshiyama Hills, central Japan, since 1 Ma. Geosci. Rep. Shizuoka Univ. 46, 19–49 (2019).

    Google Scholar 

  • Schilling, O. S., Cook, P. G. & Brunner, P. Beyond classical observations in hydrogeology: the advantages of including exchange flux, temperature, tracer concentration, residence time and soil moisture observations in groundwater model calibration. Rev. Geophys. 57, 146–182 (2019).

    Article 

    Google Scholar 

  • Schilling, O. S. et al. Quantifying groundwater recharge dynamics and unsaturated zone processes in snow-dominated catchments via on-site dissolved gas analysis. Water Resour. Res. 57, e2020WR028479 (2021).

    Article 

    Google Scholar 

  • National Hydrological Environment Database of Japan (GSJ, AIST, 2020).

  • Hayashi, T. Understanding the groundwater flow system at the northern part of Mt. Fuji: current issues and prospects (in Japanese). J. Geogr. 129, 677–695 (2020).

    Article 

    Google Scholar 

  • Yasuhara, M., Marui, A., & Kazahaya, K. (1997). Stable isotopic composition of groundwater from Mt. Yatsugatake and Mt. Fuji, Japan. Proceedings of the Rabat Symposium. Rabat Symposium, April 1997, Wallingford, UK.

  • Jasechko, S. Global isotope hydrogeology—review. Rev. Geophys. https://doi.org/10.1029/2018RG000627 (2019).

  • Yaguchi, M., Muramatsu, Y., Chiba, H., Okumura, F. & Ohba, T. The origin and hydrochemistry of deep well waters from the northern foot of Mt. Fuji, central Japan. Geochem. J. 50, 227–239 (2016).

    Article 
    CAS 

    Google Scholar 

  • Aizawa, K. et al. Gas pathways and remotely triggered earthquakes beneath Mount Fuji, Japan. Geology 44, 127–130 (2016).

    Article 
    CAS 

    Google Scholar 

  • Kipfer, R. et al. Injection of mantle type helium into Lake Van (Turkey): the clue for quantifying deep water renewal. Earth Planet. Sci. Lett. 125, 357–370 (1994).

    Article 
    CAS 

    Google Scholar 

  • Kipfer, R., Aeschbach-Hertig, W., Peeters, F. & Stute, M. in Noble Gases in Geochemistry and Cosmochemistry Reviews in Mineralogy and Geochemistry Vol. 47 (eds Porcelli, D. et al.) Ch. 14 (De Gruyter, 2002).

  • Sano, Y. & Fischer, T. P. in The Noble Gases as Geochemical Tracers: Advances in isotope geochemistry (ed. Burnard, O.) Ch. 10 (Springer, 2013).

  • Sano, Y. & Wakita, H. Distribution of 3He/4He ratios and its implications for geotectonic structure of the Japanese Islands. J. Geophys. Res. 90, 8729–8741 (1985).

    Article 
    CAS 

    Google Scholar 

  • Tomonaga, Y. et al. Fluid dynamics along the Nankai Trough: He isotopes reveal direct seafloor mantle-fluid emission in the Kumano Basin (Southwest Japan). ACS Earth Space Chem. 4, 2015–2112 (2020).

    Article 

    Google Scholar 

  • Chen, A. et al. Mantle fluids associated with crustal-scale faulting in a continental subduction setting, Taiwan. Sci Rep. 9, 10805 (2019).

    Article 

    Google Scholar 

  • Crossey, L. J. et al. Continental smokers couple mantle degassing and distinctive microbiology within continents. Earth Planet. Sci. Lett. 435, 22–30 (2016).

    Article 
    CAS 

    Google Scholar 

  • Crossey, L. J. et al. Degassing of mantle-derived CO2 and He from springs in the southern Colorado Plateau region—neotectonic connections and implications for groundwater systems. Geol. Soc. Am. Bull. 121, 1034–1053 (2009).

    Article 
    CAS 

    Google Scholar 

  • Kusuda, C., Iwamori, H., Nakamura, H., Kazahaya, K. & Morikawa, N. Arima hot spring waters as a deep-seated brine from subducting slab. Earth Planets Space 66, 119 (2014).

    Article 

    Google Scholar 

  • Sano, Y., Kameda, A., Takahata, N., Yamamoto, J. & Nakajima, J. Tracing extinct spreading center in SW Japan by helium-3 emanation. Chem. Geol. 266, 50–56 (2009).

    Article 
    CAS 

    Google Scholar 

  • Sano, Y. et al. Groundwater helium anomaly reflects strain change during the 2016 Kumamoto earthquake in Southwest Japan. Sci. Rep. 6, 37939 (2016).

    Article 
    CAS 

    Google Scholar 

  • Peeters, F. et al. Improving noble gas based paleoclimate reconstruction and groundwater dating using 20Ne/22Ne ratios. Geochim. Cosmochim. Acta 67, 587–600 (2002).

    Article 

    Google Scholar 

  • Reimann, C. & de Caritat, P. Chemical Elements in the Environment 398 (Springer, 1998).

  • Hamada, T. in Vanadium in the Environment. Part 1: Chemistry and Biochemistry Advances in Environmental Sciences and Technology Vol. 10 (ed. Nriagu, J. O.) 97–123 (Wiley & Sons, 1998).

  • Koshimizu, S. & Kyotani, T. Geochemical behaviors of multi-elements in water samples from the Fuji and Sagami Rivers, Central Japan, using vanadium as an effective indicator. Jpn J. Limnol. 63, 113–124 (2002).

    Article 
    CAS 

    Google Scholar 

  • Sohrin, R. in Green Science and Technology (eds Park, E. Y. et al.) Ch. 7 (CRC, 2019).

  • Wehrli, B. & Stumm, W. Oxygenation of vanadyl(IV). Effect of coordinated surface hydroxyl groups and hydroxide ion. Langmuir 4, 753–758 (1988).

    Article 
    CAS 

    Google Scholar 

  • Wright, M. T. & Belitz, K. Factors controlling the regional distribution of vanadium in groundwater. Ground Water 48, 515–525 (2010).

    Article 
    CAS 

    Google Scholar 

  • Deverel, S. J., Goldberg, S. & Fujii, R. in Agricultural salinity assessment and management (eds W.W. Wallender & K.K. Tanji) 89–137 (American Society of Civil Engineers, 2012).

  • Wehrli, B. & Stumm, W. Vanadyl in natural waters: adsorption and hydrolysis promote oxygenation. Geochim. Cosmochim. Acta 53, 69–77 (1989).

    Article 
    CAS 

    Google Scholar 

  • Chen, G. & Liu, H. Understanding the reduction kinetics of aqueous vanadium(V) and transformation products using rotating ring-disk electrodes. Environ. Sci. Technol. 51, 11643–11651 (2017).

    Article 
    CAS 

    Google Scholar 

  • Telfeyan, K., Johannesson, K. H., Mohajerin, T. J. & Palmore, C. D. Vanadium geochemistry along groundwater flow paths in contrasting aquifers of the United States: Carrizo Sand (Texas) and Oasis Valley (Nevada) aquifers. Chem. Geol. 410, 63–78 (2015).

    Article 
    CAS 

    Google Scholar 

  • Kan, K. et al. Archaea in Yellowstone Lake. ISME J. 5, 1784–1795 (2011).

    Article 
    CAS 

    Google Scholar 

  • Wong, H. L. et al. Dynamics of archaea at fine spatial scales in Shark Bay mat microbiomes. Sci. Rep. 7, 46160 (2017).

    Article 
    CAS 

    Google Scholar 

  • Ikeda, K. A study on chemical characteristics of ground water in Fuji area (in Japanese). J. Groundw. Hydrol. 24, 77–93 (1982).

    Google Scholar 

  • Aizawa, K. et al. Hydrothermal system beneath Mt. Fuji volcano inferred from magnetotellurics and electric self-potential. Earth Planet. Sci. Lett. 235, 343–355 (2005).

    Article 
    CAS 

    Google Scholar 

  • Yamamoto, T., Takada, A., Ishizuka, Y., Miyaji, N. & Tajima, Y. Basaltic pyroclastic flows of Fuji volcano, Japan: characteristics of the deposits and their origin. Bull. Volcanol. 67, 622–633 (2005).

    Article 

    Google Scholar 

  • Yamamoto, T., Takada, A., Ishizuka, Y. & Nakano, S. Chronology of the products of Fuji volcano based on new radiometoric carbon ages (in Japanese). Bull. Volcanol. 50, 53–70 (2005).

    CAS 

    Google Scholar 

  • Aizawa, K., Yoshimura, R. & Oshiman, N. Splitting of the Philippine Sea Plate and a magma chamber beneath Mt. Fuji. Geophys. Res. Lett. 31, L09603 (2004).

    Article 

    Google Scholar 

  • Nakamura, H., Iwamori, H. & Kimura, J.-I. Geochemical evidence for enhanced fluid flux due to overlapping subducting plates. Nat. Geosci. 1, 380–384 (2008).

    Article 
    CAS 

    Google Scholar 

  • Kaneko, T., Yasuda, A., Fujii, T. & Yoshimoto, M. Crypto-magma chambers beneath Mt. Fuji. J. Volcanol. Geotherm. Res. 193, 161–170 (2010).

    Article 
    CAS 

    Google Scholar 

  • Tsuya, H., Machida, H., & Shimozuru, D. (1988). Geology of volcano Mt. Fuji. Explanatory text of the geologic map of Mt. Fuji (scale 1:50,000; second printing). Geological Survey of Japan (GSJ), Tsukuba, Japan.

  • Yoshimoto, M. et al. Evolution of Mount Fuji, Japan: inference from drilling into the subaerial oldest volcano, pre-Komitake. Isl. Arc. 19, 470–488 (2010).

    Article 

    Google Scholar 

  • Shikazono, N., Arakawa, T. & Nakano, T. Groundwater quality, flow, and nitrogen pollution at the southern foot of Mt. Fuji (in Japanese). J. Geogr. 123, 323–342 (2014).

    Article 

    Google Scholar 

  • Tosaki, Y., Tase, N., Sasa, K., Takahashi, T. & Nagashima, Y. Estimation of groundwater residence time using the 36Cl bomb pulse. Groundwater 49, 891–902 (2011).

    Article 
    CAS 

    Google Scholar 

  • Yamamoto, T. Geology of the Southwestern Part of Fuji Volcano (in Japanese) 27 (GSJ, AIST, 2014).

  • Tsuya, H. Geology of volcano Mt. Fuji. Explanatory text of the geologic map of Mt. Fuji (scale 1:50,000). Geological Survey of Japan, Tsukuba, Japan. (1968).

  • Tomiyama, S., Ii, H., Miyaike, S., Hattori, R. & Ito, Y. Estimation of the sources and flow system of groundwater in Fuji-Gotenba area by stable isotopic analysis and groundwater flow simulation (in Japanese). Bunseki Kagaku 58, 865–872 (2009).

    Article 
    CAS 

    Google Scholar 

  • Oguchi, T. & Oguchi, C. T. in Geomorphological Landscapes of the World (ed. Migoń, P.) Ch. 31 (Springer, 2010).

  • Mean Annual Precipitation from 1981-2010 Recorded at the Four Mt. Fuji Observatories (Mishima, Fuji, Furuseki, Yamanaka) (Japan Meteorological Agency, 2015).

  • Schilling, O. S., Park, Y.-J., Therrien, R. & Nagare, R. M. Integrated surface and subsurface hydrological modeling with snowmelt and pore water freeze-thaw. Groundwater 57, 63–74 (2018).

    Article 

    Google Scholar 

  • Sakio, H. & Masuzawa, T. Advancing timberline on Mt. Fuji between 1978 and 2018. Plants 9, 1537 (2020).

    Article 

    Google Scholar 

  • Asai, K. & Koshimizu, S. 3H/3He-based groundwater ages for springs located at the foot of Mt. Fuji (in Japanese). J. Groundw. Hydrol. 61, 291–298 (2019).

    Article 

    Google Scholar 

  • Sakai, Y., Shita, K., Koshimizu, S. & Tomura, K. Geochemical study of trace vanadium in water by preconcentrational neutron activation analysis. J. Radioanal. Nucl. Chem. 216, 203–212 (1997).

    Article 
    CAS 

    Google Scholar 

  • Nahar, S. & Zhang, J. Concentration and distribution of organic and inorganic water pollutants in eastern Shizuoka, Japan. Toxicol. Environ. Chem. https://doi.org/10.1080/02772248.2011.610498 (2011).

  • Kamitani, T., Watanabe, M., Muranaka, Y., Shin, K.-C. & Nakano, T. Geographical characteristics and sources of dissolved ions in groundwater at the southern part of Mt. Fuji (in Japanese). J. Geogr. 126, 43–71 (2017).

    Article 

    Google Scholar 

  • Kawagucci, S. et al. Disturbance of deep-sea environments induced by the M9.0 Tohoku earthquake. Sci Rep. 2, 270 (2012).

    Article 

    Google Scholar 

  • Uchida, N. & Bürgmann, R. A decade of lessons learned from the 2011 Tohoku-Oki earthquake. Rev. Geophys. 59, e2020RG000713 (2021).

    Article 

    Google Scholar 

  • Mahara, Y., Igarashi, T. & Tanaka, Y. Groundwater ages of confined aquifer in Mishima lava flow, Shizuoka (in Japanese). J. Groundw. Hydrol. 35, 201–215 (1993).

    Article 

    Google Scholar 

  • Nakamura, T. et al. Sources of water and nitrate in springs at the northern foot of Mt. Fuji and nitrate loading in the Katsuragawa River (in Japanese). J. Geogr. 126, 73–88 (2017).

    Article 

    Google Scholar 

  • Notsu, K., Mori, T., Sumino, H. & Ohno, M. in Fuji Volcano (eds Aramaki, S. et al.) 173–182 (Yamanashi Institute of Environmental Sciences, 2007).

  • Ogata, M. & Kobayashi, H. Hydrologic Science Research for the Management and Utilization of Ground Water Resources in the Northern Piedmont Area of Mt. Fuji: Fluorine Ion and Vanadium Contained in Ground Water at the Northern Foot of Mt. Fuji (Yamanashi Industrial Technology Center, 2015).

  • Ogata, M., Kobayashi, H. & Koshimizu, S. Concentration of fluorine in groundwater and groundwater table at the northern foot of Mt. Fuji (in Japanese). J. Groundw. Hydrol. 56, 35–51 (2014).

    Article 

    Google Scholar 

  • Ohno, M., Sumino, H., Hernandez, P. A., Sato, T. & Nagao, K. Helium isotopes in the Izu Peninsula, Japan: relation of magma and crustal activity. J. Volcanol. Geotherm. Res. 199, 118–126 (2011).

    Article 
    CAS 

    Google Scholar 

  • Okabe, S., Shibasaki, M., Oikawa, T., Kawaguchi, Y. & Nihongi, H. Geochemical studies of spring and lake waters on and around Mt. Fuji (in Japanese). J. Sch. Mar. Sci. Technol. Tokai Univ. 14, 81–105 (1981).

    CAS 

    Google Scholar 

  • Ono, M., Ikawa, R., Machida, H. & Marui, A. Distribution of radon concentration in groundwater at the southwestern foot of Mt. Fuji (in Japanese). Radioisotopes 65, 431–439 (2016).

    Article 
    CAS 

    Google Scholar 

  • Tosaki, Y. Estimation of Groundwater Residence Time Using Bomb-Produced Chlorine-36. PhD thesis, Univ. Tsukuba (2008).

  • Umeda, K., Asamori, K. & Kusano, T. Release of mantle and crustal helium from a fault following an inland earthquake. Appl. Geochem. 37, 134–141 (2013).

    Article 
    CAS 

    Google Scholar 

  • Yamamoto, C. Estimation of Groundwater Flow System Using Multi-tracer Techniques in Mt. Fuji, Japan. (in Japanese) PhD thesis, Univ. Tsukuba (2016).

  • Yamamoto, S. & Nakamura, T. Visit to valuable water springs (129) valuable water at the northern foot of Mount Fuji (Fuji-Kawaguchiko Town) (in Japanese). J. Groundw. Hydrol. 62, 329–336 (2020).

    Article 

    Google Scholar 

  • Yamamoto, S. et al. Water sources of lake bottom springs in Lake Kawaguchi, northern foot of Mount Fuji, Japan (in Japanese). J. Geogr. 129, 665–676 (2020).

    Article 

    Google Scholar 

  • Yamamoto, S., Nakamura, T. & Uchiyama, T. Newly discovered lake bottom springs from Lake Kawaguchi, the northern foot of Mount Fuji, Japan (in Japanese). J. Jpn Assoc. Hydrol. Sci. 47, 49–59 (2017).

    Google Scholar 

  • Yamamoto, S., Nakamura, T., Koishikawa, H. & Uchiyama, T. Water quality of shallow groundwater in the southern coast area of Lake Kawaguchi at the northern foot of Mt. Fuji, Yamanashi, Japan (in Japanese). Mt Fuji Res. 11, 1–9 (2017).

    Google Scholar 

  • Coplen, T. B. Reporting of stable hydrogen, carbon, and oxygen isotopic abundances. Geothermics 66, 273–276 (1994).

    CAS 

    Google Scholar 

  • Nimz, G. J. in Isotope Tracers in Catchment Hydrology (eds Kendall, C. & McDonnell, J. J.) Ch. 8 (Elsevier, 1998).

  • Bullen, T. D. & Kendall, C. in Isotope Tracers in Catchment Hydrology (eds Kendall, C. & McDonnell, J. J.) Ch. 18 (Elsevier, 1998).

  • Vanadium Pentoxide and Other Inorganic Vanadium Compounds Vol. 29 (WHO, 2001).

  • Nagai, T., Takahashi, M., Hirahara, Y. & Shuto, K. Sr-Nd isotopic compositions of volcanic rocks from Fuji, Komitake and Ashitaka Volcanoes, Central Japan (in Japanese). Proc. Inst. Nat. Sci. Nihon Univ. 39, 205–215 (2004).

    CAS 

    Google Scholar 

  • Hogan, J. F. & Blum, J. D. Tracing hydrologic flow paths in a small forested watershed using variations in 87Sr/86Sr, [Ca]/[Sr], [Ba]/[Sr] and δ18O. Water Resour. Res. 39, 1282 (2003).

    Article 

    Google Scholar 

  • Koshikawa, M. K. et al. Using isotopes to determine the contribution of volcanic ash to Sr and Ca in stream waters and plants in a granite watershed, Mt. Tsukuba, central Japan. Environ. Earth Sci. 75, 501 (2016).

    Article 

    Google Scholar 

  • Graustein, W. C. in Stable Isotopes in Ecological Research Ecological Studies (Analysis and Synthesis) (eds Rundel, JP.W. et al.) Ch. 28 (Springer, 1989).

  • Cook, P. G. & Böhlke, J.-K. in Environmental Tracers in Subsurface Hydrology (eds Cook, P. G. & Herczeg, A. L.) Ch. 1 (Springer, 2000).

  • Aeschbach-Hertig, W. & Solomon, D. K. in The Noble Gases as Geochemical Tracers (ed. Burnard, P.) Ch. 5 (Springer, 2013).

  • Popp, A. L. et al. A framework for untangling transient groundwater mixing and travel times. Water Resour. Res. 57, e2020WR028362 (2021).

    Article 

    Google Scholar 

  • Schilling, O. S. et al. Advancing physically-based flow simulations of alluvial systems through observations of 222Rn, 3H/3He, atmospheric noble gases and the novel 37Ar tracer method. Water Resour. Res. 53, 10465–10490 (2017).

    Article 

    Google Scholar 

  • Tomonaga, Y. et al. Using noble-gas and stable-isotope data to determine groundwater origin and flow regimes: applicatoin to the Ceneri Base Tunnel (Switzerland). J. Hydrol. 545, 395–409 (2017).

    Article 
    CAS 

    Google Scholar 

  • Niu, Y. et al. Noble gas signatures in the island of Maui, Hawaii – characterizing groundwater sources in fractured systems. Water Resour. Res. 53, 3599–3614 (2017).

    Article 

    Google Scholar 

  • Warrier, R. B., Castro, M. C. & Hall, C. M. Recharge and source-water insights from the Galapagos Islands using noble gases and stable isotopes. Water Resour. Res. https://doi.org/10.1029/2011WR010954 (2012).

  • Schilling, O. S. et al. Buried paleo-channel detection with a groundwater model, tracer-based observations, and spatially varying, preferred anisotropy pilot point calibration. Geophys. Res. Lett. 49, e2022GL098944 (2022).

    Article 

    Google Scholar 

  • Brennwald, M. S., Schmidt, M., Oser, J. & Kipfer, R. A portable and autonomous mass spectrometric system for on-site environmental gas analysis. Environ. Sci. Technol. 50, 13455–12463 (2016).

    Article 
    CAS 

    Google Scholar 

  • Tomonaga, Y. et al. On-line monitoring of the gas composition in the full-scale emplacement experiment at Mont Terri (Switzerland). Appl. Geochem. 100, 234–243 (2019).

    Article 
    CAS 

    Google Scholar 

  • Brennwald, M. S., Tomonaga, Y. & Kipfer, R. Deconvolution and compensation of mass spectrometric overlap interferences with the miniRUEDI portable mass spectrometer. MethodsX 7, 101038 (2020).

    Article 
    CAS 

    Google Scholar 

  • Van Rossum, G. & Drake, F. L. Python 3 Reference Manual (CreateSpace, 2009).

  • Beyerle, U. et al. A mass spectrometric system for the analysis of noble gases and tritium from water samples. Environ. Sci. Technol. 34, 2042–2050 (2000).

    Article 
    CAS 

    Google Scholar 

  • Clarke, W. B., Jenkins, W. J. & Top, Z. Determination of tritium by mass spectrometric measurement of 3He. Int. J. Appl. Radiat. Isotopes 27, 515–522 (1976).

    Article 
    CAS 

    Google Scholar 

  • Bucci, A., Petrella, E., Celivo, F. & Naclerio, G. Use of molecular approaches in hydrogeological studies: the case of carbonate aquifers in southern Italy. Hydrogeol. J. 25, 1017–1031 (2017).

    Article 
    CAS 

    Google Scholar 

  • Proctor, C. R. et al. Phylogenetic clustering of small low nucleic acid-content bacteria across diverse freshwater ecosystems. ISME J. 12, 1344–1359 (2018).

    Article 
    CAS 

    Google Scholar 

  • Pronk, M., Goldscheider, N. & Zopfi, J. Microbial communities in karst groundwater and their potential use for biomonitoring. Hydrogeol. J. 17, 37–48 (2009).

    Article 

    Google Scholar 

  • Miller, J. B., Frisbee, M. D., Hamilton, T. L. & Murugapiran, S. K. Recharge from glacial meltwater is critical for alpine springs and their microbiomes. Environ. Res. Lett. 16, 064012 (2021).

    Article 
    CAS 

    Google Scholar 

  • Ginn, T. R. et al. in Encyclopedia of Hydrological Sciences (ed. Anderson, M.G.) Ch. 105 (John Wiley & Sons, 2005).

  • Tufenkji, N. & Emelko, M. B. in Encyclopedia of Environmental Health (ed. Nriagu, J.O.) Vol. 2, 715–726 (Elsevier, 2011).

  • Nevecherya, I. K., Shestakov, V. M., Mazaev, V. T. & Shlepnina, T. G. Survival rate of pathogenic bacteria and viruses in groundwater. Water Res. 32, 209–214 (2005).

    Article 
    CAS 

    Google Scholar 

  • Franzosa, E. A. et al. Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling. Nature Rev. Microbiol. 13, 360–372 (2015).

    Article 
    CAS 

    Google Scholar 

  • Kimura, H., Ishibashi, J. I., Masuda, H., Kato, K. & Hanada, S. Selective phylogenetic analysis targeting 16S rRNA genes of hyperthermophilic archaea in the deep-subsurface hot biosphere. Appl. Environ. Microbiol. 73, 2110–2117 (2007).

    Article 
    CAS 

    Google Scholar 

  • Somerville, C. C., Knight, I. T., Straube, W. L. & Colwell, R. R. Simple, rapid method for direct isolation of nucleic-acids from aquatic environments. Appl. Environ. Microbiol. 55, 548–554 (1989).

    Article 
    CAS 

    Google Scholar 

  • Takahashi, S., Tomita, J., Nishioka, K., Hisada, T. & Nishijima, M. Development of a prokaryotic universal primer for simultaneous analysis of bacteria and archaea using next-generation sequencing. PLoS ONE https://doi.org/10.1371/journal.pone.0105592 (2014).

  • Wasimuddin et al. Evaluation of primer pairs for microbiome profiling from soils to humans within the One Health framework. Mol. Ecol. Resour. 20, 1558–1571 (2020).

    Article 
    CAS 

    Google Scholar 

  • Suzuki, Y., Shimizu, H., Kuroda, T., Takada, Y. & Nukazawa, K. Plant debris are hotbeds for pathogenic bacteria on recreational sandy beaches. Sci Rep. 11, 11496 (2021).

    Article 
    CAS 

    Google Scholar 

  • Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    Article 
    CAS 

    Google Scholar 

  • Caporaso, J. G. et al. QIIME allows analysis of high- throughput community sequencing data. Nat. Methods 7, 335–336 (2010).

    Article 
    CAS 

    Google Scholar 

  • McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012).

    Article 
    CAS 

    Google Scholar 

  • DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).

    Article 
    CAS 

    Google Scholar 

  • McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    Article 
    CAS 

    Google Scholar 

  • R: A Language and Environment for Statistical Computing v.3.6.2 (R Foundation for Statistical Computing, 2019).

  • Porter, K. G. & Feig, Y. S. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25, 943–948 (1980).

    Article 

    Google Scholar 

  • Schilling, O. S. et al. Mt. Fuji hydrogeochemical and microbiological dataset. HydroShare https://doi.org/10.4211/hs.4eac370d12e142b5aa718e5deb57da39 (2022).

  • Gotelli, N. J. & Chao, A. in Encyclopedia of Biodiversity Vol. 5 (ed. Levin, S. A.) 195–211 (Academic, 2013).

  • World Imagery (Esri, 2021); https://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9

  • Elevation Tile Map of Japan (DEM5A; Resolution: 5m) (Geospatial Information Authority of Japan (GSI), 2021).

  • Chiba, T., Kaneta, S. & Suzuki, Y. in The International Archives of the Photogrammetry Vol. XXXVII Ch. B2 (Remote Sensing and Spatial Information Sciences, 2008).

  • Air Asia Survey Co. Ltd Red Relief Image Map of Japan (RRIM 10_2016) (GSI, 2016).

  • Active Fault Database of Japan April 26 2019 edn Disclosure database DB095 (AIST, 2019).

  • Bird, P. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2001GC000252 (2003).

  • Van Horne, A., Sato, H. & Ishiyama, T. Evolution of the Sea of Japan back-arc and some unsolved issues. Tectonophysics 710–711, 6–20 (2017).

    Article 

    Google Scholar 

  • Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

    Article 

    Google Scholar 

  • 2019 Coastal Disposal System Evaluation Confirmation Technology Results Report (in Japanese) (AIST, 2019).


  • Source: Ecology - nature.com

    Preparing to be prepared

    Synapsid tracks with skin impressions illuminate the terrestrial tetrapod diversity in the earliest Permian of equatorial Pangea