in

Rickettsia felis DNA recovered from a child who lived in southern Africa 2000 years ago

  • Mounier, A. et al. Deciphering African late middle Pleistocene hominin diversity and the origin of our species. Nat. Commun. https://doi.org/10.1038/s41467-019-11213-w (2019).

  • Schlebusch, C. M. et al. Southern African ancient genomes estimate modern human divergence to 350,000 to 260,000 years ago. Science 358, 652–655 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Lombard, M. et al. Ancient human DNA: how sequencing the genome of a boy from Ballito Bay changed human history. S Afr. J. Sci. 114, 1–3 (2018).

    Google Scholar 

  • Grün, R. et al. Direct dating of Florisbad hominid. Nature 382, 500–501 (1996).

    PubMed 

    Google Scholar 

  • Grine, F. et al. The Middle Stone Age human fossil record from Klasies River Main Site. J. Hum. Evol. 103, 53–78 (2017).

    PubMed 

    Google Scholar 

  • Henshilwood, C. S. et al. A 100,000-year-old ochre-processing workshop at Blombos Cave, South Africa. Science 33, 219–222 (2011).

    Google Scholar 

  • Lombard, M. et al. Four-field co-evolutionary model for human cognition: variation in the Middle Stone Age/Middle Palaeolithic. J. Archeol. Method Theory 28, 142–177 (2021).

    Google Scholar 

  • Wadley, L. What stimulated rapid, cumulative innovation after 100,000 years ago? J. Archeol. Method Theory 28, 120–141 (2021).

    Google Scholar 

  • Tylen, K. et al. The evolution of early symbolic behavior in Homo sapiens. Proc. Natl Acad. Sci. USA 117, 4578–4584 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rifkin, R. F. et al. Ancient oncogenesis, infection, and human evolution. Evol. Appl. https://doi.org/10.1111/eva.12497 (2017).

  • Pittman, K. J. et al. The legacy of past pandemics: common human mutations that protect against infectious disease. PLoS Pathog. 12, e1005680 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Andam, C. P. et al. Microbial genomics of ancient plagues and outbreaks. Trends Microbiol. 24, 978–990 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Houldcroft, C. J. et al. Migrating microbes: what pathogens can tell us about population movements and human evolution. Ann. Hum. Biol. 44, 397–407 (2017).

    PubMed 

    Google Scholar 

  • Reyes-Centeno, H. et al. Testing modern human out-of-Africa dispersal models using dental nonmetric data. Curr. Anthropol. 58, 406–417 (2017).

    Google Scholar 

  • Pimenoff, V. N. et al. The role of aDNA in understanding the co-evolutionary patterns of human sexually transmitted infections. Genes https://doi.org/10.3390/genes9070317 (2018).

  • Ferwerda, B. et al. Functional consequences of Toll-like Receptor 4 polymorphisms. Mol. Med. 14, 346–352 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tanabe, K. et al. Plasmodium falciparum accompanied the human expansion out of Africa. Curr. Biol. 20, 1283–1289 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Linz, B. et al. An African origin for the intimate association between humans and Helicobacter pylori. Nature 445, 915–918 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nédélec, Y. et al. Genetic ancestry and natural selection drive population differences in immune responses to pathogens. Cell 167, 657–669 (2016).

    PubMed 

    Google Scholar 

  • Owers, K. A. et al. Adaptation to infectious disease exposure in indigenous Southern African populations. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2017.0226 (2017).

  • Schlebusch, C. M. et al. Khoe-San genomes reveal unique variation and confirm the deepest population divergence in Homo sapiens. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msaa140 (2020).

  • Kessler, S. E. et al. Selection to outsmart the germs: the evolution of disease recognition and social cognition. J. Hum. Evol. 108, 92–109 (2017).

    PubMed 

    Google Scholar 

  • Thornhill, R. et al. The parasite-stress theory of sociality, the behavioral immune system, and human social and cognitive uniqueness. Evol. Behav. Sci. 8, 257–264 (2014).

    Google Scholar 

  • Gurven, M. et al. Longevity among hunter‐gatherers: a cross‐cultural examination. Popul Dev. Rev. 33, 321–365 (2007).

    Google Scholar 

  • Pfeiffer, S. et al. The people behind the samples: biographical features of past hunter-gatherers from KwaZulu-Natal who yielded aDNA. Int. J. Paleopathol. 24, 158–164 (2019).

    PubMed 

    Google Scholar 

  • Schriefer, M. E. et al. Identification of a novel rickettsial infection in a patient diagnosed with murine typhus. J. Clin. Microbiol. 32, 949–954 (1994).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pages, F. et al. The past and present threat of vector-borne diseases in deployed troops. Clin. Microbiol. Infect. 16, 209–224 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Wood, D. E. et al. Improved metagenomic analysis with Kraken 2. Genome Biol. https://doi.org/10.1186/s13059-019-1891-0 (2019).

  • Jónsson, H. et al. mapDamage 2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gillespie, J. J. et al. Genomic diversification in strains of Rickettsia felis isolated from different arthropods. Genome Biol. Evol. 7, 35–56 (2015).

    CAS 

    Google Scholar 

  • Cardwell, M. M. et al. The Sca2 autotransporter protein from Rickettsia conorii is sufficient to mediate adherence to and invasion of cultured mammalian cells. Infect. Immun. 77, 5272–5280 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kay, G. L. et al. Recovery of a Medieval Brucella melitensis genome using shotgun metagenomics. mBio. https://doi.org/10.1128/mBio.01337-14 (2014).

  • Schuenemann, V. J. et al. Genome-wide comparison of medieval and modern Mycobacterium leprae. Science 341, 179–183 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Müller, R. et al. Genotyping of ancient Mycobacterium tuberculosis strains reveals historic genetic diversity. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2013.3236 (2014).

  • Rasmussen, S. et al. Early divergent strains of Yersinia pestis in Eurasia 5,000 years ago. Cell 163, 571–582 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vågene, A. J. et al. Salmonella enterica genomes from victims of a major sixteenth-century epidemic in Mexico. Nat. Ecol. Evol. 2, 520–528 (2018).

    PubMed 

    Google Scholar 

  • Guellil, M. et al. Genomic blueprint of a relapsing fever pathogen in 15th century Scandinavia. Proc. Natl Acad. Sci. USA 115, 10422–10427 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Patterson Ross, Z. et al. The paradox of HBV evolution as revealed from a 16th century mummy. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1006750 (2015).

  • Marciniak, S. et al. Plasmodium falciparum malaria in 1st-2nd century CE southern Italy. Curr. Biol. 26, 1220–1222 (2016).

    Google Scholar 

  • Margaryan, A. et al. Ancient pathogen DNA in human teeth and petrous bones. Ecol. Evol. https://doi.org/10.1002/ece3.3924 (2018).

  • Zhou, Z. et al. Pan-genome analysis of ancient and modern Salmonella enterica demonstrates genomic stability of the invasive Para C lineage for millennia. Curr. Biol. 28, 2420–2428 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Williams, K. M. Update on bone health in paediatric chronic disease. Endocrinol. Metab. Clin. North Am. https://doi.org/10.1016/j.ecl.2016.01.009 (2016).

  • Latham, K.E. et al. DNA recovery and analysis from skeletal material in modern forensic contexts. Forensic Sci. Res. https://doi.org/10.1080/20961790.2018.1515594 (2019).

  • Briggs, H. M. et al. Diagnosis and management of tickborne Rickettsial diseases: rocky mountain spotted fever and other spotted fever group Rickettsioses, Ehrlichioses, and Anaplasmosis – United States. MMWR Recomm. Rep. 65, 1–44 (2016).

    Google Scholar 

  • Jonker, F. A. M. et al. Anaemia, iron deficiency and susceptibility to infection in children in sub‐Saharan Africa, guideline dilemmas. Br. J. Haematol. https://doi.org/10.1111/bjh.14593. (2017).

  • Key, F. M. et al. Emergence of human-adapted Salmonella enterica is linked to the Neolithization process. Nat. Ecol. Evol. 4, 324–333 (2020).

    Google Scholar 

  • Angelakis, E. et al. Rickettsia felis: the complex journey of an emergent human pathogen. Trends Parasitol. https://doi.org/10.1016/j.pt.2016.04.009 (2016).

  • Legendre, K. P. et al. Rickettsia felis: A review of transmission mechanisms of an emerging pathogen. Trop. Med. Infect. Dis. https://doi.org/10.3390/tropicalmed2040064 (2017).

  • Mediannikov, O. et al. Common epidemiology of Rickettsia felis infection and malaria, Africa. Emerg. Infect. Dis. https://doi.org/10.3201/eid1911.130361 (2014).

  • Gonçalves, B. P. et al. Examining the human infectious reservoir for Plasmodium falciparum malaria in areas of differing transmission intensity. Nat. Commun. https://doi.org/10.1038/s41467-017-01270-4 (2017).

  • Snowden, J. et al. Rickettsia rickettsiae (Rocky Mountain Spotted Fever). StatPearls Publishing, available from https://www.ncbi.nlm.nih.gov/books/NBK430881/ (2017).

  • Azad, A. A. Pathogenic Rickettsiae as bioterrorism agents. Ann. N. Y Acad. Sci. 990, 734–738 (2007).

    Google Scholar 

  • Oliveira, R. P. et al. Rickettsia felis in Ctenocephalides spp. fleas, Brazil. Emerg. Infect. Dis. https://doi.org/10.3201/eid0803.010301 (2002).

  • Parola, P. et al. Rickettsia felis: The next mosquito-borne outbreak? Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(16)30331-0 (2016).

  • Wadley, L. Legacies from the Later Stone Age. S Afr Archaeol Bull. Goodwin Ser. 6, 42–53 (1989).

    Google Scholar 

  • Henn, B. M. et al. The great human expansion. Proc. Natl Acad. Sci. USA 109, 17758–17764 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, D. Y. et al. Technical note: improved DNA extraction from ancient bones using silica-based spin columns. Am. J. Phys. Anthropol. 105, 539–543 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Malmström, E. M. et al. More on contamination: the use of asymmetric molecular behavior to identify authentic ancient human DNA. Mol. Biol. Evol. 24, 998–1004 (2007).

    PubMed 

    Google Scholar 

  • Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meyer, M. et al. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harbor Protoc. https://doi.org/10.1101/pdb.prot5448 (2010).

  • Li, H. et al. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26, 589–595 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Briggs, A. W. et al. Patterns of damage in genomic DNA sequences from a Neandertal. Proc. Natl Acad. Sci. USA 104, 14616–14621 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Borry, M. et al. PyDamage: automated ancient damage identification and estimation for contigs in ancient DNA de novo assembly. PeerJ. https://doi.org/10.7717/peerj.11845 (2021).

  • Schubert, M. et al. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. https://doi.org/10.1186/s13104-016-1900-2 (2016).

  • Langmead, B. et al. Fast gapped-read alignment with Bowtie 2. Nat. Methods. https://doi.org/10.1038/nmeth.1923 (2012).

  • Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. https://doi.org/10.1089/cmb.2012.0021 (2012).

  • Jain, C. et al. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. https://doi.org/10.1038/s41467-018-07641-9 (2018).

  • Gardner, S. H. et al. kSNP3.0: SNP detection and phylogenetic analysis of genomes without genome alignment or reference genome. Bioinformatics. https://doi.org/10.1093/bioinformatics/btv271 (2015).

  • Contreras-Moreira, B. et al. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.02411-13 (2013).

  • Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. https://doi.org/10.1101/gr.092759.109 (2009).

  • Parks, D. H. et al. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes Genome Res. https://doi.org/10.1101/gr.186072.114 (2015).

  • Suyama, M. et al. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34, W609–W612 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dereeper, A. et al. Phylogeny. fr: Robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. https://doi.org/10.1093/nar/gkn180 (2008).

  • Nguyen, L. T. et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msu300 (2015).

  • Hoang, D. T. et al. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. https://doi.org/10.1093/molbev/msx281 (2018).

  • Kalyaanamoorthy, S. et al. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods. https://doi.org/10.1038/nmeth.4285 (2017).

  • Price, M. N. et al. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One. https://doi.org/10.1371/journal.pone.0009490 (2010).

  • Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. https://doi.org/10.1093/bioinformatics/btl446 (2006).

  • Kumar, S. et al. MEGA-CC: Computing core of molecular evolutionary genetics analysis program for automated and iterative data analysis. Bioinformatics. https://doi.org/10.1093/bioinformatics/bts507 (2012).

  • Shimodaira, H. An approximately unbiased test of phylogenetic tree selection. Syst. Biol. https://doi.org/10.1080/10635150290069913 (2002).

  • Olm, M. R. et al. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. https://doi.org/10.1038/ismej.2017.126 (2017).

  • Posada, D. jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 7, 1253–1256 (2008).

    Google Scholar 

  • Letunic, I. et al. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23, 127–128 (2007).

    CAS 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Taking the long view: The Deep Time Project

    Aviva Intveld named 2023 Gates Cambridge Scholar