in

Salinity stress improves antioxidant potential by modulating physio-biochemical responses in Moringa oleifera Lam.

[adace-ad id="91168"]
  • Bibi, S. et al. Exogenous Ca/Mg quotient reduces the inhibitory effects of PEG induced osmotic stress on Avena sativa L. Braz. J. Biol. 84, 264642 (2022).

    Article 

    Google Scholar 

  • Yasmeen, S. et al. Melatonin as a foliar application and adaptation in lentil (Lens culinaris Medik.) crops under drought stress. Sustainability 14, 16345 (2022).

    Article 
    CAS 

    Google Scholar 

  • Ali, S. et al. The effects of osmosis and thermo-priming on salinity stress tolerance in Vigna radiata L. Sustain. 14, 12924 (2022).

    Article 
    CAS 

    Google Scholar 

  • Umar, U. D. et al. Micronutrients foliar and drench application mitigate mango sudden decline disorder and impact fruit yield. Agronomy 12, 2449 (2022).

    Article 
    CAS 

    Google Scholar 

  • Raymond, M. J. & Smirnoff, N. Proline metabolism and transport in maize seedlings at low water potential. Ann. Bot. 89, 813–823 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Afridi, M. S. et al. New opportunities in plant microbiome engineering for increasing agricultural sustainability under stressful conditions. Front. Plant Sci. 13, 1–22 (2022).

    Article 

    Google Scholar 

  • Salam, A. et al. Nano-priming against abiotic stress: A way forward towards sustainable agriculture. Sustainability 14, 14880 (2022).

    Article 
    CAS 

    Google Scholar 

  • Yuan, F., Guo, J., Shabala, S. & Wang, B. Reproductive physiology of halophytes: Current standing. Front. Plant Sci. 9, 1954 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Flowers, T. J. & Colmer, T. D. Plant salt tolerance: Adaptations in halophytes. Ann. Bot. 115, 327–331 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roy, S. & Chakraborty, U. Cross-generic studies with rice indicate that ion homeostasis and antioxidant defense is associated with superior salinity tolerance in Cynodon dactylon (L.) Pers. Indian J. Plant Physiol. 20, 14–22 (2015).

    Article 

    Google Scholar 

  • Ali, B. et al. Bacillus thuringiensis PM25 ameliorates oxidative damage of salinity stress in maize via regulating growth, leaf pigments, antioxidant defense system, and stress responsive gene expression. Front. Plant Sci. 13, 921668 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ali, B. et al. Role of endophytic bacteria in salinity stress amelioration by physiological and molecular mechanisms of defense: A comprehensive review. S. Afr. J. Bot. 151, 33–46 (2022).

    Article 
    CAS 

    Google Scholar 

  • Ali, B. et al. Bacillus mycoides PM35 reinforces photosynthetic efficiency, antioxidant defense, expression of stress-responsive genes, and ameliorates the effects of salinity stress in maize. Life 12, 219 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ali, B. et al. PGPR-mediated salt tolerance in maize by modulating plant physiology, antioxidant defense, compatible solutes accumulation and bio-surfactant producing genes. Plants 11, 345 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Munns, R. & Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yildiz, M. & Terzi, H. Small heat shock protein responses in leaf tissues of wheat cultivars with different heat susceptibility. Biologia (Bratisl). 63, 521–525 (2008).

    Article 
    CAS 

    Google Scholar 

  • Shao, T., Zhang, L., Shimojo, M. & Masuda, Y. Fermentation quality of Italian ryegrass (Lolium multiflorum Lam.) silages treated with encapsulated-glucose, glucose, sorbic acid and pre-fermented juices. Asian Australas. J. Anim. Sci. 20, 1699–1704 (2007).

    Article 
    CAS 

    Google Scholar 

  • Ashraf, M. & Harris, P. J. C. Photosynthesis under stressful environments: An overview. Photosynthetica 51, 163–190 (2013).

    Article 
    CAS 

    Google Scholar 

  • Ma, J. et al. Short-term responses of Spinach (Spinacia oleracea L.) to the individual and combinatorial effects of Nitrogen, Phosphorus and Potassium and silicon in the soil contaminated by boron. Front. Plant Sci. 13, 983156 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, J. et al. Impact of foliar application of syringic acid on tomato (Solanum lycopersicum L.) under heavy metal stress-insights into nutrient uptake, redox homeostasis, oxidative stress, and antioxidant defense. Front. Plant Sci. 13, 950120 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, J. et al. Individual and combinatorial effects of SNP and NaHS on morpho-physio-biochemical attributes and phytoextraction of chromium through Cr-stressed spinach (Spinacia oleracea L.). Front. Plant Sci. 13, 973740 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Butcher, K., Wick, A. F., DeSutter, T., Chatterjee, A. & Harmon, J. Soil salinity: A threat to global food security. Agron. J. 108, 2189–2200 (2016).

    Article 
    CAS 

    Google Scholar 

  • Apel, K. & Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signaling transduction. Annu. Rev. Plant Biol. 55, 373 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Triantaphylides, C. et al. Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol. 148, 960–968 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Amna et al. Bio-fabricated silver nanoparticles: A sustainable approach for augmentation of plant growth and pathogen control. In Sustainable Agriculture Reviews, Vol. 53 345–371 (Springer, 2021).

  • Faryal, S. et al. Thiourea-capped nanoapatites amplify osmotic stress tolerance in Zea mays L. by conserving photosynthetic pigments, Osmolytes Biosynthesis and Antioxidant Biosystems. Molecules 27, 5744 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tuteja, N. Abscisic acid and abiotic stress signaling. Plant Signal. Behav. 2, 135–138 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saleem, K. et al. Chrysotile-asbestos-induced damage in Panicum virgatum and Phleum pretense species and its alleviation by organic-soil amendment. Sustainability 14, 10824 (2022).

    Article 

    Google Scholar 

  • Wahab, A. et al. Plants’ physio-biochemical and phyto-hormonal responses to alleviate the adverse effects of drought stress: A comprehensive review. Plants 11, 1620 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McCord, J. M. The evolution of free radicals and oxidative stress. Am. J. Med. 108, 652–659 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Farooq, T. H. et al. Morpho-physiological growth performance and phytoremediation capabilities of selected xerophyte grass species towards Cr and Pb stress. Front. Plant Sci. 13, 997120 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dola, D. B. et al. Nano-iron oxide accelerates growth, yield, and quality of Glycine max seed in water deficits. Front. Plant Sci. 13, 992535 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mittler, R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405–410 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jaleel, C. A., Gopi, R., Alagu Lakshmanan, G. M. & Panneerselvam, R. Triadimefon induced changes in the antioxidant metabolism and ajmalicine production in Catharanthus roseus (L.) G. Don. Plant Sci. 171, 271–276 (2006).

    Article 
    CAS 

    Google Scholar 

  • Zainab, N. et al. Pgpr-mediated plant growth attributes and metal extraction ability of sesbania sesban l. In industrially contaminated soils. Agronomy 11, 11 (2021).

    Article 

    Google Scholar 

  • Nawaz, H. et al. Comparative effectiveness of EDTA and citric acid assisted phytoremediation of Ni contaminated soil by using canola (Brassica napus). Braz. J. Biol. 82, 261785 (2022).

    Article 

    Google Scholar 

  • Hasanuzzaman, M. et al. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 9, 681 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dixon, D. P., Cummins, I., Cole, D. J. & Edwards, R. Glutathione-mediated detoxification systems in plants. Curr. Opin. Plant Biol. 1, 258–266 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kangasjärvi, S. et al. Diverse roles for chloroplast stromal and thylakoid-bound ascorbate peroxidases in plant stress responses. Biochem. J. 412, 275–285 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Cai, Y., Luo, Q., Sun, M. & Corke, H. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 74, 2157–2184 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gengmao, Z., Quanmei, S., Yu, H., Shihui, L. & Changhai, W. The physiological and biochemical responses of a medicinal plant (Salvia miltiorrhiza L.) to stress caused by various concentrations of NaCl. PLoS ONE 9, e89624 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schroeter, H. et al. MAPK signaling in neurodegeneration: Influences of flavonoids and of nitric oxide. Neurobiol. Aging 23, 861–880 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Horemans, N., Foyer, C. H. & Asard, H. Transport and action of ascorbate at the plant plasma membrane. Trends Plant Sci. 5, 263–267 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Miller, N. J., Diplock, A. T. & Rice-Evans, C. A. Evaluation of the total antioxidant activity as a marker of the deterioration of apple juice on storage. J. Agric. Food Chem. 43, 1794–1801 (1995).

    Article 
    CAS 

    Google Scholar 

  • Elkhlifi, Z. et al. Potential role of biochar on capturing soil nutrients, carbon sequestration and managing environmental challenges: A review. Sustainability 15, 2527. https://doi.org/10.3390/su15032527 (2023).

    Article 

    Google Scholar 

  • Mahmood, K. T., Mugal, T. & Haq, I. U. Moringa oleifera: A natural gift-a review. J. Pharm. Sci. Res. 2, 775 (2010).

    Google Scholar 

  • Anwar, F., Hussein, A. I., Ashraf, M., Jamail, A. & Iqbal, S. Effect of salinity on yield and quality of Moringa oleifera seed oil. Grasas y Aceites 57, 394–401 (2006).

    Article 
    CAS 

    Google Scholar 

  • Barrs, H. D. & Weatherley, P. E. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust. J. Biol. Sci. 15, 413–428 (1962).

    Article 

    Google Scholar 

  • Kirk, J. T. O. & Allen, R. L. Dependence of chloroplast pigment synthesis on protein synthesis: Effect of actidione. Biochem. Biophys. Res. Commun. 21, 523–530 (1965).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Callister, A. N., Arndt, S. K. & Adams, M. A. Comparison of four methods for measuring osmotic potential of tree leaves. Physiol. Plant. 127, 383–392 (2006).

    Article 
    CAS 

    Google Scholar 

  • Bates, L. S., Waldren, R. P. & Teare, I. D. Rapid determination of free proline for water-stress studies. Plant Soil 39, 205–207 (1973).

    Article 
    CAS 

    Google Scholar 

  • Yemm, E. W. & Willis, A. The estimation of carbohydrates in plant extracts by anthrone. Biochem. J. 57, 508 (1954).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Velikova, V., Yordanov, I. & Edreva, A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Sci. 151, 59–66 (2000).

    Article 
    CAS 

    Google Scholar 

  • Heath, R. L. & Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125, 189–198 (1968).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dionisio-Sese, M. L. & Tobita, S. Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 135, 1–9 (1998).

    Article 
    CAS 

    Google Scholar 

  • Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fridovich, I. Superoxide dismutases. Annu. Rev. Biochem. 44, 147–159 (1975).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Aebi, H. Catalase in vitro. In Methods in enzymology 105, 121–126 (Elsevier, 1984).

  • Nakano, Y. & Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific. Anal. Antioxid. Enzym. Act. lipid peroxidation proline content Agropyron desertorum under drought Stress (1981).

  • Polle, A., Otter, T. & Seifert, F. Apoplastic peroxidases and lignification in needles of Norway spruce (Picea abies L.). Plant Physiol. 106, 53–60 (1994).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guri, A. Variation in glutathione and ascorbic acid content among selected cultivars of Phaseolus vulgaris prior to and after exposure to ozone. Can. J. Plant Sci. 63, 733–737 (1983).

    Article 
    CAS 

    Google Scholar 

  • Brand-Williams, W., Cuvelier, M.-E. & Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28, 25–30 (1995).

    Article 
    CAS 

    Google Scholar 

  • Re, R. et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231–1237 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Benzie, I. F. F. & Strain, J. J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 239, 70–76 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Prieto, P., Pineda, M. & Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 269, 337–341 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Singleton, V. L. & Rossi, J. A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144–158 (1965).

    CAS 

    Google Scholar 

  • Chang, C.-C., Yang, M.-H., Wen, H.-M. & Chern, J.-C. Estimation of total flavonoid content in propolis by two complementary colometric methods. J. food drug Anal. 10, 3 (2002).

    Google Scholar 

  • Saeed, S. et al. Validating the impact of water potential and temperature on seed germination of wheat (Triticum aestivum L.) via hydrothermal time model. Life 12, 983 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fatima, N. et al. Germination, growth and ions uptake of moringa (Moringa oleifera L.) grown under saline condition. J. Plant Nutr. 41, 1555–1565 (2018).

    Article 
    CAS 

    Google Scholar 

  • Bashir, S. et al. Structural and functional stability of photosystem-II in Moringa oleifera under salt stress. Aust. J. Crop Sci. 15, 676–682 (2021).

    Article 
    CAS 

    Google Scholar 

  • Farooq, F. et al. Impact of varying levels of soil salinity on emergence, growth and biochemical attributes of four Moringa oleifera landraces. PLoS ONE 17, e0263978 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bekka, S., Tayeb-Hammani, K., Boucekkine, I., Aissiou, M.Y.E.-A. & Djazouli, Z. E. Adaptation strategies of Moringa oleifera under drought and salinity stresses. Ukr. J. Ecol. 12, 8–16 (2022).

    Google Scholar 

  • Uematsu, K., Suzuki, N., Iwamae, T., Inui, M. & Yukawa, H. Increased fructose 1,6-bisphosphate aldolase in plastids enhances growth and photosynthesis of tobacco plants. J. Exp. Bot. 63, 3001–3009 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Khan, M. A. An ecological overview of halophytes from Pakistan. In Cash Crop Halophytes: Recent Studies. Tasks for Vegetation Science Vol. 38 (eds Lieth, H., Mochtchenko, M.) 167–187 (Springer, Dordrecht, 2003). https://doi.org/10.1007/978-94-017-0211-9_20.

    Chapter 

    Google Scholar 

  • Chapin, F. S., Bloom, A. J., Field, C. B. & Waring, R. H. Plant responses to multiple environmental factors. Bioscience 37, 49–57 (1987).

    Article 

    Google Scholar 

  • Ma, T. et al. Shoot and root biomass allocation of sunflower varying with soil salinity and nitrogen applications. Agron. J. 109, 2545–2555 (2017).

    Article 
    CAS 

    Google Scholar 

  • Moud, A. & Maghsoudi, K. Salt stress effects on respiration and growth of germinated seeds of different wheat (Triticum aestivum L.) cultivars. World J. Agric. 4, 351–358 (2008).

    Google Scholar 

  • Meloni, D. A., Oliva, M. A., Ruiz, H. A. & Martinez, C. A. Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. J. Plant Nutr. 24, 599–612 (2001).

    Article 
    CAS 

    Google Scholar 

  • Geissler, N., Hussin, S. & Koyro, H. W. Interactive effects of NaCl salinity and elevated atmospheric CO2 concentration on growth, photosynthesis, water relations and chemical composition of the potential cash crop halophyte Aster tripolium L. Environ. Exp. Bot. 65, 220–231 (2009).

    Article 
    CAS 

    Google Scholar 

  • Sun, Y. L. et al. The increase in unsaturation of fatty acids of phosphatidylglycerol in thylakoid membrane enhanced salt tolerance in tomato. Photosynthetica 48, 400–408 (2010).

    Article 
    CAS 

    Google Scholar 

  • Takamiya, K. I., Tsuchiya, T. & Ohta, H. Degradation pathway(s) of chlorophyll: What has gene cloning revealed? Trends Plant Sci. 5, 426–431 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Adnan, M. Y. et al. Desmostachya bipinnata manages photosynthesis and oxidative stress at moderate salinity. Flora Morphol. Distrib. Funct. Ecol. Plants 225, 1–9 (2016).

    Article 

    Google Scholar 

  • Pinheiro, H. A. et al. Leaf gas exchange, chloroplastic pigments and dry matter accumulation in castor bean (Ricinus communis L) seedlings subjected to salt stress conditions. Ind. Crops Prod. 27, 385–392 (2008).

    Article 
    CAS 

    Google Scholar 

  • Zhou, Y. et al. Production of betacyanins in transgenic Nicotiana tabacum increases tolerance to salinity. Front. Plant Sci. 12, 653147 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ribeiro, V. P. et al. Endophytic Bacillus strains enhance pearl millet growth and nutrient uptake under low-P. Braz. J. Microbiol. 49, 40–46 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Elhag, A. Z. & Abdalla, M. H. Investigation of sodium chloride tolerance of moringa (Moringa Oleifera Lam.) Transplants. Univers. J. Agric. Res. 2, 45–49 (2014).

    Article 

    Google Scholar 

  • Nouman, W. et al. Drought affects size, nutritional quality, antioxidant activities and phenolic acids pattern of Moringa oleifera Lam. J. Appl. Bot. Food Qual. 91, 79–87 (2018).

    CAS 

    Google Scholar 

  • Carballo-Méndez, F. D. J. et al. Silicon improves seedling production of Moringa oleifera Lam. Under saline stress. Pak. J. Bot. 54, 751–757 (2022).

    Article 

    Google Scholar 

  • Gorai, M., Ennajeh, M., Khemira, H. & Neffati, M. Influence of NaCl-salinity on growth, photosynthesis, water relations and solute accumulation in Phragmites australis. Acta Physiol. Plant. 33, 963–971 (2011).

    Article 
    CAS 

    Google Scholar 

  • Pagter, M., Bragato, C., Malagoli, M. & Brix, H. Osmotic and ionic effects of NaCl and Na2SO4 salinity on Phragmites australis. Aquat. Bot. 90, 43–51 (2009).

    Article 

    Google Scholar 

  • Abideen, Z. et al. Antioxidant activity and polyphenolic content of phragmites karka under saline conditions. Pakistan J. Bot. 47, 813–818 (2015).

    CAS 

    Google Scholar 

  • Teakle, N. L. et al. Differential tolerance to combined salinity and O2 deficiency in the halophytic grasses Puccinellia ciliata and Thinopyrum ponticum: The importance of K+ retention in roots. Environ. Exp. Bot. 87, 69–78 (2013).

    Article 
    CAS 

    Google Scholar 

  • Panuccio, M. R., Jacobsen, S. E., Akhtar, S. S. & Muscolo, A. Effect of saline water on seed germination and early seedling growth of the halophyte quinoa. AoB Plants 6, plu047. https://doi.org/10.1093/aobpla/plu047 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wege, S., Gilliham, M. & Henderson, S. W. Chloride: Not simply a ‘cheap osmoticum’, but a beneficial plant macronutrient. J. Exp. Bot. 68, 3057–3069 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Aziz, I., Gulzar, S., Noor, M. & Khan, M. A. Seasonal variation in water relations of Halopyrum mucronatum (L.) Stapf. growing near Sandspit, Karachi. Pak. J. Bot. 37, 141–148 (2005).

    Google Scholar 

  • Teixeira Lins, C. M. et al. Pressure–volume (P–V) curves in Atriplex nummularia Lindl. for evaluation of osmotic adjustment and water status under saline conditions. Plant Physiol. Biochem. 124, 155–159 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Verslues, P. E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J. & Zhu, J. K. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J. 45, 523–539 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shoukat, E., Aziz, I., Ahmed, M. Z., Abideen, Z. & Khan, M. A. Growth patterns of Phragmites karka under saline conditions depend on the bulk elastic modulus. Crop Pasture Sci. 69, 535–545 (2018).

    Article 
    CAS 

    Google Scholar 

  • Rozema, J. & Schat, H. Salt tolerance of halophytes, research questions reviewed in the perspective of saline agriculture. Environ. Exp. Bot. 92, 83–95 (2013).

    Article 
    CAS 

    Google Scholar 

  • Hameed, A. & Khan, M. A. Halophytes: Biology and economic potentials. Karachi Univ. J. Sci. 39, 40–44 (2011).

    Google Scholar 

  • Katschnig, D., Broekman, R. & Rozema, J. Salt tolerance in the halophyte Salicornia dolichostachya Moss: Growth, morphology and physiology. Environ. Exp. Bot. 92, 32–42 (2013).

    Article 
    CAS 

    Google Scholar 

  • Salehi, M., Majnun Hoseini, N., Naghdi Badi, H. & Mazaheri, D. Biochemical and growth responses of Moringa peregrina (Forssk.) fiori to different sources and levels of salinity. J. Med. Plants 11, 54–61 (2012).

    CAS 

    Google Scholar 

  • Soliman, A. S., El-Feky, S. A. & Darwish, E. Alleviation of salt stress on Moringa peregrina using foliar application of nanofertilizers. J. Hortic. For. 7, 36–47 (2015).

    Article 
    CAS 

    Google Scholar 

  • Azeem, M. et al. Salicylic acid seed priming modulates some biochemical parametrs to improve germination and seedling growth of salt stressed wheat (Triticum aestivum L.). Pakistan J. Bot. 51, 385–391 (2019).

    MathSciNet 
    CAS 

    Google Scholar 

  • Sultana, R. et al. Coumarin-Mediated growth regulations, antioxidant enzyme activities, and photosynthetic efficiency of sorghum bicolor under saline conditions. Front. Plant Sci. 13, 799404 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Coêlho, M. R. V. et al. Salt tolerance of Calotropis procera begins with immediate regulation of aquaporin activity in the root system. Physiol. Mol. Biol. Plants 27, 457–468 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bouassaba, K. & Chougui, S. Effet Du Stress Salin Sur Le Comportement Biochimique Et Anatomique Chez Deux Variétés De Piment (Capsicum Annuum L.) À Mila /Algérie. Eur. Sci. J. ESJ 14, 159 (2018).

    Google Scholar 

  • El Moukhtari, A., Cabassa-Hourton, C., Farissi, M. & Savouré, A. How does proline treatment promote salt stress tolerance during crop plant development? Front. Plant Sci. 11, 1127 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Afridi, M. S. et al. Plant microbiome engineering: Hopes or hypes. Biology 11, 1782. https://doi.org/10.3390/biology11121782 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sami, F., Yusuf, M., Faizan, M., Faraz, A. & Hayat, S. Role of sugars under abiotic stress. Plant Physiol. Biochem. 109, 54–61 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Saleem, A. et al. Iron sulfate (FeSO4) improved physiological attributes and antioxidant capacity by reducing oxidative stress of Oryza sativa L. cultivars in alkaline soil. Sustainability 14, 16845. https://doi.org/10.3390/su142416845 (2022).

    Article 
    CAS 

    Google Scholar 

  • Mehmood, S. et al. Bacillus sp. PM31 harboring various plant growth-promoting activities regulates Fusarium dry rot and wilt tolerance in potato. Arch. Agron. Soil Sci. https://doi.org/10.1080/03650340.2021.1971654 (2021).

    Article 

    Google Scholar 

  • Benzarti, M., Rejeb, K. B., Debez, A., Messedi, D. & Abdelly, C. Photosynthetic activity and leaf antioxidative responses of Atriplex portulacoides subjected to extreme salinity. Acta Physiol. Plant. 34, 1679–1688 (2012).

    Article 
    CAS 

    Google Scholar 

  • Duarte, B., Santos, D., Marques, J. C. & Caçador, I. Ecophysiological adaptations of two halophytes to salt stress: Photosynthesis, PS II photochemistry and anti-oxidant feedback—implications for resilience in climate change. Plant Physiol. Biochem. 67, 178–188 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Foyer, C. H. & Noctor, G. Redox regulation in photosynthetic organisms: Signaling, acclimation, and practical implications. Antioxid. Redox Signal. 11, 861–905 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abogadallah, G. M. Insights into the significance of antioxidative defense under salt stress. Plant Signal. Behav. 5, 369–374 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Subudhi, P. K. & Baisakh, N. Spartina alterniflora Loisel., a halophyte grass model to dissect salt stress tolerance. In Vitro Cell. Dev. Biol. Plant 47, 441–457 (2011).

    Article 
    CAS 

    Google Scholar 

  • De Abreu, I. N. & Mazzafera, P. Effect of water and temperature stress on the content of active constituents of Hypericum brasiliense Choisy. Plant Physiol. Biochem. 43, 241–248 (2005).

    Article 

    Google Scholar 

  • Askarzadeh, A. & Rezazadeh, A. Parameter identification for solar cell models using harmony search-based algorithms. Sol. Energy 86, 3241–3249 (2012).

    Article 
    ADS 

    Google Scholar 

  • Parida, A. K. & Jha, B. Salt tolerance mechanisms in mangroves: A review. Trees Struct. Funct. 24, 199–217 (2010).

    Article 

    Google Scholar 

  • Niknam, V. & Ebrahimzadeh, H. Phenolics content in Astragalus species. Pak. J. Bot. 34, 283–289 (2002).

    Google Scholar 

  • Agati, G., Matteini, P., Goti, A. & Tattini, M. Chloroplast-located flavonoids can scavenge singlet oxygen. New Phytol. 174, 77–89 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rai, S. N. & Proctor, J. Ecological studies on four rainforests in Karnataka, India: II. Litterfall. J. Ecol. 74, 439–454 (1986).

    Article 

    Google Scholar 

  • Thakur, A. et al. Nutritional evaluation, phytochemical makeup, and antibacterial and antioxidant properties of wild plants utilized as food by the Gaddis, a tribe in the Western Himalayas. Front. Agron. 4, 1010309. https://doi.org/10.3389/fagro.2022.1010309 (2022).

    Article 

    Google Scholar 

  • Boumenjel, A., Pantera, A., Papadopoulos, A. & Ammari, Y. Tolerance and adaptation mechanisms developed by Moringa oleifera (L.) seeds under oxidative stress induced by salt stress during in vitro germination. Glob. Nest J. 23, 1–10 (2021).

    Google Scholar 

  • Wong, S. P., Leong, L. P. & William Koh, J. H. Antioxidant activities of aqueous extracts of selected plants. Food Chem. 99, 775–783 (2006).

    Article 
    CAS 

    Google Scholar 

  • Djeridane, A. et al. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem. 97, 654–660 (2006).

    Article 
    CAS 

    Google Scholar 

  • Meireles, D., Gomes, J., Lopes, L., Hinzmann, M. & Machado, J. A review of properties, nutritional and pharmaceutical applications of Moringa oleifera: Integrative approach on conventional and traditional Asian medicine. Adv. Tradit. Med. 20, 495–515 (2020).

    Article 

    Google Scholar 

  • Ichoku, C. et al. A spatio-temporal approach for global validation and analysis of MODIS aerosol products. Geophys. Res. Lett. 29, 1616 (2002).

    Article 

    Google Scholar 

  • Shahidi, F. & Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects—a review. J. Funct. Foods 18, 820–897 (2015).

    Article 
    CAS 

    Google Scholar 

  • Qasim, M. et al. Antioxidant properties, phenolic composition, bioactive compounds and nutritive value of medicinal halophytes commonly used as herbal teas. S. Afr. J. Bot. 110, 240–250 (2017).

    Article 
    CAS 

    Google Scholar 

  • Benabderrahim, M. A., Yahia, Y., Bettaieb, I., Elfalleh, W. & Nagaz, K. Antioxidant activity and phenolic profile of a collection of medicinal plants from Tunisian arid and Saharan regions. Ind. Crops Prod. 138, 111427 (2019).

    Article 
    CAS 

    Google Scholar 

  • Singh, B. N. et al. Oxidative DNA damage protective activity, antioxidant and anti-quorum sensing potentials of Moringa oleifera. Food Chem. Toxicol. 47, 1109–1116 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jaiswal, D. et al. Role of Moringa oleifera in regulation of diabetes-induced oxidative stress. Asian Pac. J. Trop. Med. 6, 426–432 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sreelatha, S., Jeyachitra, A. & Padma, P. R. Antiproliferation and induction of apoptosis by Moringa oleifera leaf extract on human cancer cells. Food Chem. Toxicol. 49, 1270–1275 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sreelatha, S. & Padma, P. R. Antioxidant activity and total phenolic content of Moringa oleifera leaves in two stages of maturity. Plant Foods Hum. Nutr. 64, 303–311 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rani, N. Z. A., Husain, K. & Kumolosasi, E. Moringa genus: A review of phytochemistry and pharmacology. Front. Pharmacol. 9, 108 (2018).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Unraveling Amazon tree community assembly using Maximum Information Entropy: a quantitative analysis of tropical forest ecology

    Directional asymmetry in gonad length indicates moray eels (Teleostei, Anguilliformes, Muraenidae) are “right-gonadal”