Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233 (1999).
Google Scholar
Plaisance, L., Caley, M. J., Brainard, R. E. & Knowlton, N. The diversity of coral reefs: What are we missing?. PLoS ONE 6, e25026 (2011).
Google Scholar
Frieler, K. et al. Limiting global warming to 2 °C is unlikely to save most coral reefs. Nat. Clim. Change 3, 165–170 (2013).
Google Scholar
Hughes, T. P. et al. Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933 (2003).
Google Scholar
Carpenter, K. E. et al. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321, 560–563 (2008).
Google Scholar
Lotze, H. K. et al. Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proc. Natl. Acad. Sci. 116, 12907–12912 (2019).
Google Scholar
Doney, S. C. et al. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4, 11–37 (2012).
Google Scholar
Van Oppen, M. J., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl. Acad. Sci. 112, 2307–2313 (2015).
Google Scholar
Parrett, J. M. & Knell, R. J. The effect of sexual selection on adaptation and extinction under increasing temperatures. Proc. R. Soc. B. 285, 20180303 (2018).
Google Scholar
Hagedorn, M. et al. Assisted gene flow using cryopreserved sperm in critically endangered coral. Proc. Natl. Acad. Sci. 118, e2110559118 (2021).
Google Scholar
Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).
Google Scholar
Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).
Google Scholar
Epstein, N., Bak, R. & Rinkevich, B. Applying forest restoration principles to coral reef rehabilitation. Aquat. Conserv. Mar. Freshw. Ecosyst. 13, 387–395 (2003).
Google Scholar
West, J. M. & Salm, R. V. Resistance and resilience to coral bleaching: Implications for coral reef conservation and management. Conserv. Biol. 17, 956–967 (2003).
Google Scholar
Yeemin, T., Sutthacheep, M. & Pettongma, R. Coral reef restoration projects in Thailand. Ocean Coast. Manag. 49, 562–575 (2006).
Google Scholar
Anthony, K. et al. Operationalizing resilience for adaptive coral reef management under global environmental change. Glob. Chang. Biol. 21, 48–61 (2015).
Google Scholar
Randall, C. J. et al. Sexual production of corals for reef restoration in the Anthropocene. Mar. Ecol. Prog. Ser. 635, 203–232 (2020).
Google Scholar
Porter, J. W., Fitt, W. K., Spero, H. J., Rogers, C. S. & White, M. W. Bleaching in reef corals: Physiological and stable isotopic responses. Proc. Natl. Acad. Sci. 86, 9342–9346 (1989).
Google Scholar
Mendes, J. M. & Woodley, J. D. Effect of the 1995–1996 bleaching event on polyp tissue depth, growth, reproduction and skeletal band formation in Montastraea annularis. Mar. Ecol. Prog. Ser. 235, 93–102 (2002).
Google Scholar
Grottoli, A., Rodrigues, L. & Juarez, C. Lipids and stable carbon isotopes in two species of Hawaiian corals, Porites compressa and Montipora verrucosa, following a bleaching event. Mar. Biol. 145, 621–631 (2004).
Google Scholar
Rodrigues, L. J. & Grottoli, A. G. Energy reserves and metabolism as indicators of coral recovery from bleaching. Limnol. Oceanogr. 52, 1874–1882 (2007).
Google Scholar
Levas, S. J., Grottoli, A. G., Hughes, A., Osburn, C. L. & Matsui, Y. Physiological and biogeochemical traits of bleaching and recovery in the mounding species of coral Porites lobata: Implications for resilience in mounding corals. PLoS ONE 8, e63267 (2013).
Google Scholar
Schoepf, V. et al. Annual coral bleaching and the long-term recovery capacity of coral. Proc. R. Soc. B. 282, 20151887 (2015).
Google Scholar
Dai, C., Fan, T. & Yu, J. Reproductive isolation and genetic differentiation of a scleractinian coral Mycedium elephantotus. Mar. Ecol. Prog. Ser. 201, 179–187 (2000).
Google Scholar
Vargas-Ángel, B., Colley, S. B., Hoke, S. M. & Thomas, J. D. The reproductive seasonality and gametogenic cycle of Acropora cervicornis off Broward County, Florida, USA. Coral Reefs 25, 110–122 (2006).
Google Scholar
Rosser, N. & Gilmour, J. New insights into patterns of coral spawning on Western Australian reefs. Coral Reefs 27, 345–349 (2008).
Google Scholar
Szmant, A. M. & Gassman, N. J. The effects of prolonged “bleaching” on the tissue biomass and reproduction of the reef coral Montastrea annularis. Coral Reefs 8, 217–224 (1990).
Google Scholar
Baird, A. H. & Marshall, P. A. Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 237, 133–141 (2002).
Google Scholar
Levitan, D. R., Boudreau, W., Jara, J. & Knowlton, N. Long-term reduced spawning in Orbicella coral species due to temperature stress. Mar. Ecol. Prog. Ser. 515, 1–10 (2014).
Google Scholar
Ward, S., Harrison, P. & Hoegh-Guldberg, O. Coral bleaching reduces reproduction of scleractinian corals and increases susceptibility to future stress. In Proc. 9th Int. Coral Reef Symp. 1123–1128 (2002).
Johnston, E. C., Counsell, C. W., Sale, T. L., Burgess, S. C. & Toonen, R. J. The legacy of stress: Coral bleaching impacts reproduction years later. Funct. Ecol. 34, 2315–2325 (2020).
Google Scholar
Hirose, M. & Hidaka, M. Reduced reproductive success in scleractinian corals that survived the 1998 bleaching in Okinawa. Galaxea 2000, 17–21 (2000).
Google Scholar
Omori, M., Fukami, H., Kobinata, H. & Hatta, M. Significant drop of fertilization of Acropora corals in 1999: An after-effect of heavy coral bleaching?. Limnol. Oceanogr. 46, 704–706 (2001).
Google Scholar
Hagedorn, M. et al. Potential bleaching effects on coral reproduction. Reprod. Fertil. Dev. 28, 1061–1071 (2016).
Google Scholar
Bassim, K., Sammarco, P. & Snell, T. Effects of temperature on success of (self and non-self) fertilization and embryogenesis in Diploria strigosa (Cnidaria, Scleractinia). Mar. Biol. 140, 479–488 (2002).
Google Scholar
Kenkel, C. D. et al. Development of gene expression markers of acute heat-light stress in reef-building corals of the genus Porites. PLoS ONE 6, e26914 (2011).
Google Scholar
Louis, Y. D., Bhagooli, R., Kenkel, C. D., Baker, A. C. & Dyall, S. D. Gene expression biomarkers of heat stress in scleractinian corals: Promises and limitations. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 191, 63–77 (2017).
Google Scholar
Bonesso, J. L., Leggat, W. & Ainsworth, T. D. Exposure to elevated sea-surface temperatures below the bleaching threshold impairs coral recovery and regeneration following injury. PeerJ 5, e3719 (2017).
Google Scholar
Gierz, S., Ainsworth, T. D. & Leggat, W. Diverse symbiont bleaching responses are evident from 2-degree heating week bleaching conditions as thermal stress intensifies in coral. Mar. Freshw. Res. 71, 1149–1160 (2020).
Google Scholar
Baker, D. M., Freeman, C. J., Wong, J. C., Fogel, M. L. & Knowlton, N. Climate change promotes parasitism in a coral symbiosis. ISME J. 12, 921–930 (2018).
Google Scholar
Yee, S. H. & Barron, M. G. Predicting coral bleaching in response to environmental stressors using 8 years of global-scale data. Environ. Monit. Assess. 161, 423–438 (2010).
Google Scholar
Lesser, M. P. Coral bleaching: causes and mechanisms. In Coral Reefs: An Ecosystem in Transition (eds Riegl, B. M. & Purkis, S. J.) 405–419 (Springer, 2011).
Google Scholar
Barber, J. & Andersson, B. Too much of a good thing: Light can be bad for photosynthesis. Trends Biochem. Sci. 17, 61–66 (1992).
Google Scholar
Aro, E.-M., Virgin, I. & Andersson, B. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim. Biophys. Acta Bioenergy 1143, 113–134 (1993).
Google Scholar
Lesser, M. P. & Farrell, J. H. Exposure to solar radiation increases damage to both host tissues and algal symbionts of corals during thermal stress. Coral Reefs 23, 367–377 (2004).
Google Scholar
Salih, A., Hoegh-Guldberg, O. & Cox, G. Bleaching responses of symbiotic dinoflagellates in corals: the effects of light and elevated temperature on their morphology and physiology. In Proceedings of the Australian Coral Reef Society 75th Anniversary Conference (eds Greenwood, J. G. & Hall, N. R.) 199–216 (1998).
Smith, D. J., Suggett, D. J. & Baker, N. R. Is photoinhibition of zooxanthellae photosynthesis the primary cause of thermal bleaching in corals?. Glob. Chang. Biol. 11, 1–11 (2005).
Google Scholar
Downs, C. et al. Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching. PLoS ONE 8, e77173 (2013).
Google Scholar
Banaszak, A. T. & Lesser, M. P. Effects of solar ultraviolet radiation on coral reef organisms. Photochem. Photobiol. Sci. 8, 1276–1294 (2009).
Google Scholar
Jokiel, P. L. & York, R. H. Jr. Solar ultraviolet photobiology of the reef coral Pocillopora damicornis and symbiotic zooxanthellae. Bull. Mar. Sci. 32, 301–315 (1982).
Vareschi, E. & Fricke, H. Light responses of a scleractinian coral (Plerogyra sinuosa). Mar. Biol. 90, 395–402 (1986).
Google Scholar
Henley, E. M. et al. Reproductive plasticity of Hawaiian Montipora corals following thermal stress. Sci. Rep. 11, 12525 (2021).
Google Scholar
Wellington, G. & Fitt, W. Influence of UV radiation on the survival of larvae from broadcast-spawning reef corals. Mar. Biol. 143, 1185–1192 (2003).
Google Scholar
Gleason, D. F. & Wellington, G. M. Ultraviolet radiation and coral bleaching. Nature 365, 836–838 (1993).
Google Scholar
Courtial, L., Roberty, S., Shick, J. M., Houlbrèque, F. & Ferrier-Pagès, C. Interactive effects of ultraviolet radiation and thermal stress on two reef-building corals. Limnol. Oceanogr. 62, 1000–1013 (2017).
Google Scholar
Bahr, K. D., Jokiel, P. L. & Rodgers, K. S. The 2014 coral bleaching and freshwater flood events in Kāneʻohe Bay. Hawaiʻi. PeerJ 3, e1136 (2015).
Google Scholar
Rodgers, K. S., Bahr, K. D., Jokiel, P. L. & Richards Donà, A. Patterns of bleaching and mortality following widespread warming events in 2014 and 2015 at the Hanauma Bay Nature Preserve, Hawai‘i. PeerJ 5, e3355 (2017).
Google Scholar
Ritson-Williams, R. & Gates, R. D. Coral community resilience to successive years of bleaching in Kāne‘ohe Bay, Hawai‘i. Coral Reefs 39, 757–769 (2020).
Google Scholar
Krupp, D. A. Sexual reproduction and early development of the solitary coral Fungia scutaria (Anthozoa: Scleractinia). Coral Reefs 2, 159–164 (1983).
Google Scholar
Kramarsky-Winter, E. & Loya, Y. Reproductive strategies of two fungiid corals from the northern Red Sea: Environmental constraints?. Mar. Ecol. Prog. Ser. 174, 175–182 (1998).
Google Scholar
Loya, Y. & Sakai, K. Bidirectional sex change in mushroom stony corals. Proc. R. Soc. B. 275, 2335–2343 (2008).
Google Scholar
Hagedorn, M. et al. Coral larvae conservation: Physiology and reproduction. Cryobiology 52, 33–47 (2006).
Google Scholar
Jokiel, P. L. & Brown, E. K. Global warming, regional trends and inshore environmental conditions influence coral bleaching in Hawaii. Glob. Chang. Biol. 10, 1627–1641 (2004).
Google Scholar
Tanaka, K., Guidry, M. W. & Gruber, N. Ecosystem responses of the subtropical Kaneohe Bay, Hawaii, to climate change: A nitrogen cycle modeling approach. Aquat. Geochem. 19, 569–590 (2013).
Google Scholar
Couch, C. S. et al. Mass coral bleaching due to unprecedented marine heatwave in Papahānaumokuākea Marine National Monument (Northwestern Hawaiian Islands). PLoS ONE 12, e0185121 (2017).
Google Scholar
Coles, S. L. et al. Evidence of acclimatization or adaptation in Hawaiian corals to higher ocean temperatures. PeerJ 6, e5347 (2018).
Google Scholar
Barnhill, K. A. & Bahr, K. D. Coral resilience at Malaukaa fringing reef, Kāneʻohe Bay, Oʻahu after 18 years. J. Mar. Sci. Eng. 7, 311 (2019).
Google Scholar
Lesser, M., Stochaj, W., Tapley, D. & Shick, J. Bleaching in coral reef anthozoans: Effects of irradiance, ultraviolet radiation, and temperature on the activities of protective enzymes against active oxygen. Coral Reefs 8, 225–232 (1990).
Google Scholar
Brown, B., Dunne, R., Scoffin, T. & Le Tissier, M. Solar damage in intertidal corals. Mar. Ecol. Prog. Ser. 219–230 (1994).
Le Tissier, M. D. A. & Brown, B. E. Dynamics of solar bleaching in the intertidal reef coral Goniastrea aspera at Ko Phuket, Thailand. Mar. Ecol. Prog. Ser. 136, 235–244 (1996).
Google Scholar
Lesser, M. P. Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates. Limnol. Oceanogr. 41, 271–283 (1996).
Google Scholar
Takahashi, S., Nakamura, T., Sakamizu, M., Woesik, R. V. & Yamasaki, H. Repair machinery of symbiotic photosynthesis as the primary target of heat stress for reef-building corals. Plant Cell Physiol. 45, 251–255 (2004).
Google Scholar
Coelho, V. et al. Shading as a mitigation tool for coral bleaching in three common Indo-Pacific species. J. Exp. Mar. Biol. Ecol. 497, 152–163 (2017).
Google Scholar
Marquis, R. J. Phenological variation in the neotropical understory shrub Piper arielanum: Causes and consequences. Ecology 69, 1552–1565 (1988).
Google Scholar
Bouwmeester, J. et al. Latitudinal variation in monthly-scale reproductive synchrony among Acropora coral assemblages in the Indo-Pacific. Coral Reefs 40, 1411–1418 (2021).
Google Scholar
Hagedorn, M. et al. Preserving and using germplasm and dissociated embryonic cells for conserving Caribbean and Pacific coral. PLoS ONE 7, e33354 (2012).
Google Scholar
Zuchowicz, N. et al. Assessing coral sperm motility. Sci. Rep. 11, 61 (2021).
Google Scholar
Binet, M., Doyle, C., Williamson, J. & Schlegel, P. Use of JC-1 to assess mitochondrial membrane potential in sea urchin sperm. J. Exp. Mar. Biol. Ecol. 452, 91–100 (2014).
Google Scholar
Jokiel, P., Maragos, J. & Franzisket, L. Coral growth: buoyant weight technique. In Coral Reefs: Research Methods Vol. 5 (eds Stoddart, D. R. & Johannes, R. E.) 529–542 (UNESCO, 1978).
R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org (R Foundation for Statistical Computing, 2019).
Fox, J. & Weisberg, S. An R Companion to Applied Regression 3rd edn. (Sage Publications, 2019).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).
Google Scholar
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).
Google Scholar
Lenth, R. V. Least-squares means: The R package lsmeans. J. Stat. Softw. 69, 1–33 (2016).
Google Scholar
Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. J. Math. Methods Biosci. 50, 346–363 (2008).
Google Scholar
Graves, S., Piepho, H.-P. & Selzer, M. L. multcompView: Visualizations of paired comparisons. R package version 0.1-7. https://CRAN.R-project.org/package=multcompView (2015).
Christensen, R. H. B. ordinal-Regression models for ordinal data. R package version 2019.4-25. https://cran.r-project.org/package=ordinal/. (2019).
Mangiafico, S. rcompanion: functions to support extension education program evaluation. R package version 2.3.7. https://cran.r-project.org/package=rcompanion (2019).
Hope, R. M. Rmisc: Ryan Miscellaneous. R package version 1.5. https://cran.r-project.org/package=Rmisc (2013).
Hervé, M. RVAideMemoire: Testing and plotting procedures for biostatistics, R package version 0.9-73. https://cran.r-project.org/package=RVAideMemoire (2019).
Callaghan, J. A short note on the intensification and extreme rainfall associated with Hurricane Lane. Trop. Cyclone Res. Rev. 8, 103–107 (2019).
Google Scholar
Guest, J. R., Baird, A. H., Goh, B. P. L. & Chou, L. M. Seasonal reproduction in equatorial reef corals. Invertebr. Reprod. Dev. 48, 207–218 (2005).
Google Scholar
Lotterhos, K. E. & Levitan, D. Gamete release and spawning behavior in broadcast spawning marine invertebrates. In The Evolution of Primary Sexual Characters (eds Leonard, J. & Córdoba-Aguilar, A.) 99–120 (Oxford Univ. Press, 2010).
Ims, R. A. The ecology and evolution of reproductive synchrony. Trends Ecol. Evol. 5, 135–140 (1990).
Google Scholar
Shlesinger, T. & Loya, Y. Breakdown in spawning synchrony: A silent threat to coral persistence. Science 365, 1002–1007 (2019).
Google Scholar
Guest, J. R., Baird, A. H., Bouwmeester, J. & Edwards, A. J. To assess temporal breakdown in spawning synchrony requires comparable temporal data. https://doi.org/10.1126/comment.737627/full/ (2020).
Hartmann, D. L. et al. Observations: atmosphere and surface. In Climate change 2013 The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 159–254 (Cambridge University Press, 2013).
Pörtner, H. et al. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (IPCC Intergovernmental Panel on Climate Change, 2019).
Cheng, L., Abraham, J., Hausfather, Z. & Trenberth, K. E. How fast are the oceans warming?. Science 363, 128–129 (2019).
Google Scholar
Gorbunov, M. Y. & Falkowski, P. G. Photoreceptors in the cnidarian hosts allow symbiotic corals to sense blue moonlight. Limnol. Oceanogr. 47, 309–315 (2002).
Google Scholar
Boch, C. A., Ananthasubramaniam, B., Sweeney, A. M., Doyle Iii, F. J. & Morse, D. E. Effects of light dynamics on coral spawning synchrony. Biol. Bull. 220, 161–173 (2011).
Google Scholar
Sweeney, A. M., Boch, C. A., Johnsen, S. & Morse, D. E. Twilight spectral dynamics and the coral reef invertebrate spawning response. J. Exp. Biol. 214, 770–777 (2011).
Google Scholar
Nozawa, Y. Annual variation in the timing of coral spawning in a high-latitude environment: Influence of temperature. Biol. Bull. 222, 192–202 (2012).
Google Scholar
Babcock, R. C. et al. Synchronous spawnings of 105 scleractinian coral species on the Great Barrier Reef. Mar. Biol. 90, 379–394 (1986).
Google Scholar
Hunter, C. Environmental cues controlling spawning in two Hawaiian corals, Montipora verrucosa and M. dilatata. In Proc 6th Int Coral Reef Symp. vol. 2, 727–732.
Levitan, D. R. et al. Mechanisms of reproductive isolation among sympatric broadcast spawning corals of the Montastraea annularis species complex. Evolution 58, 308–323 (2004).
Negri, A. P., Marshall, P. A. & Heyward, A. J. Differing effects of thermal stress on coral fertilization and early embryogenesis in four Indo Pacific species. Coral Reefs 26, 759–763 (2007).
Google Scholar
Humanes, A., Noonan, S. H., Willis, B. L., Fabricius, K. E. & Negri, A. P. Cumulative effects of nutrient enrichment and elevated temperature compromise the early life history stages of the coral Acropora tenuis. PLoS ONE 11, e0161616 (2016).
Google Scholar
Lesser, M. P., Kruse, V. A. & Barry, T. M. Exposure to ultraviolet radiation causes apoptosis in developing sea urchin embryos. J. Exp. Biol. 206, 4097–4103 (2003).
Google Scholar
Häder, D.-P. et al. Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors. Photochem. Photobiol. Sci. 14, 108–126 (2015).
Google Scholar
Albright, R. & Mason, B. Projected near-future levels of temperature and pCO2 reduce coral fertilization success. PLoS ONE 8, e56468 (2013).
Google Scholar
Espinoza, J., Schulz, M., Sanchez, R. & Villegas, J. Integrity of mitochondrial membrane potential reflects human sperm quality. Andrologia 41, 51–54 (2009).
Google Scholar
Paoli, D. et al. Mitochondrial membrane potential profile and its correlation with increasing sperm motility. Fertil. Steril. 95, 2315–2319 (2011).
Google Scholar
Gallo, A., Esposito, M. C., Tosti, E. & Boni, R. Sperm motility, oxidative status, and mitochondrial activity: Exploring correlation in different species. Antioxidants 10, 1131 (2021).
Google Scholar
Schlegel, P., Binet, M. T., Havenhand, J. N., Doyle, C. J. & Williamson, J. E. Ocean acidification impacts on sperm mitochondrial membrane potential bring sperm swimming behaviour near its tipping point. J. Exp. Biol. 218, 1084–1090 (2015).
Google Scholar
Gulko, D. Effects of ultraviolet radiation on fertilization and production of planula larvae in the Hawaiian coral Fungia scutaria. In Ultraviolet Radiation and Coral Reefs Vol. 41 (eds Gulko, D. & Jokiel, P. L.) 135–147 (University of Hawai’i, 1995).
Pruski, A. M., Nahon, S., Escande, M.-L. & Charles, F. Ultraviolet radiation induces structural and chromatin damage in Mediterranean sea-urchin spermatozoa. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 673, 67–73 (2009).
Google Scholar
Dahms, H.-U. & Lee, J.-S. UV radiation in marine ectotherms: Molecular effects and responses. Aquat. Toxicol. 97, 3–14 (2010).
Google Scholar
Nesa, B., Baird, A. H., Harii, S., Yakovleva, I. & Hidaka, M. Algal symbionts increase DNA damage in coral planulae exposed to sunlight. Zool. Stud. 51, 12–17 (2012).
Google Scholar
Paxton, C. W., Baria, M. V. B., Weis, V. M. & Harii, S. Effect of elevated temperature on fecundity and reproductive timing in the coral Acropora digitifera. Zygote 24, 511 (2015).
Google Scholar
Jokiel, P. & Coles, S. Effects of temperature on the mortality and growth of Hawaiian reef corals. Mar. Biol. 43, 201–208 (1977).
Google Scholar
Cantin, N. E., Cohen, A. L., Karnauskas, K. B., Tarrant, A. M. & McCorkle, D. C. Ocean warming slows coral growth in the Central Red Sea. Science 329, 322–325. https://doi.org/10.1126/science.1190182 (2010).
Google Scholar
Cooper, T. F., De’Ath, G., Fabricius, K. E. & Lough, J. M. Declining coral calcification in massive Porites in two nearshore regions of the northern Great Barrier Reef. Glob. Chang. Biol. 14, 529–538 (2008).
Google Scholar
Tanzil, J., Brown, B., Tudhope, A. & Dunne, R. Decline in skeletal growth of the coral Porites lutea from the Andaman Sea, South Thailand between 1984 and 2005. Coral Reefs 28, 519–528 (2009).
Google Scholar
Tanzil, J. T. I. et al. Regional decline in growth rates of massive Porites corals in Southeast Asia. Glob. Chang. Biol. 19, 3011–3023 (2013).
Google Scholar
Richmond, R. H., Tisthammer, K. H. & Spies, N. P. The effects of anthropogenic stressors on reproduction and recruitment of corals and reef organisms. Front. Mar. Sci. 5, 226 (2018).
Google Scholar
Chen, P.-Y., Chen, C.-C., Chu, L. & McCarl, B. Evaluating the economic damage of climate change on global coral reefs. Glob. Environ. Change 30, 12–20 (2015).
Google Scholar
Kaniewska, P., Alon, S., Karako-Lampert, S., Hoegh-Guldberg, O. & Levy, O. Signaling cascades and the importance of moonlight in coral broadcast mass spawning. Elife 4, e09991 (2015).
Google Scholar
Lin, C.-H., Takahashi, S., Mulla, A. J. & Nozawa, Y. Moonrise timing is key for synchronized spawning in coral Dipsastraea speciosa. Proc. Natl. Acad. Sci. 118, e2101985118 (2021).
Google Scholar
Anthony, K. R. et al. Interventions to help coral reefs under global change—A complex decision challenge. PLoS ONE 15, e0236399 (2020).
Google Scholar
Daly, J. et al. Cryopreservation can assist gene flow on the Great Barrier Reef. Coral Reefs 41, 455–462 (2022).
Google Scholar
Source: Ecology - nature.com