Martins, L. C. et al. Poluição atmosférica e atendimentos por pneumonia e gripe em São Paulo, Brasil. Revista de Saúde Pública 36, 88–94 (2002).
Google Scholar
Goudarzi, G. et al. Health risk assessment on human exposed to heavy metals in the ambient air PM10 in Ahvaz, Southwest Iran. Int. J. Biometeorol. 62, 1075–1083 (2018).
Google Scholar
Makri, A. & Stilianakis, N. I. Vulnerability to air pollution health effects. Int. J. Hygiene Environ. Health 211, 326–336 (2008).
Google Scholar
Idani, E. et al. Characteristics, sources, and health risks of atmospheric PM10-bound heavy metals in a populated Middle Eastern City. Toxin Rev. 39, 266–274 (2020).
Google Scholar
Wang, J., Hu, Z., Chen, Y., Chen, Z. & Xu, S. Contamination characteristics and possible sources of PM10 and PM2.5 in different functional areas of Shanghai, China. Atmos. Environ. 68, 221–229 (2013).
Google Scholar
Guarnieri, M. & Balmes, J. R. Outdoor air pollution and asthma. Lancet 383, 1581–1592 (2014).
Google Scholar
Anderson, J. O., Thundiyil, J. G. & Stolbach, A. Clearing the air: A review of the effects of particulate matter air pollution on human health. J. Med. Toxicol. 8, 166–175 (2012).
Google Scholar
Roy, D., Seo, Y.-C., Kim, S. & Oh, J. Human health risks assessment for airborne PM10-bound metals in Seoul, Korea. Environ. Sci. Pollut. Res. 26, 24247–24261 (2019).
Google Scholar
Maesano, C. et al. Impacts on human mortality due to reductions in PM10 concentrations through different traffic scenarios in Paris, France. Sci. The Total. Environ. 698, 134257 (2020).
Google Scholar
Maleki, H., Sorooshian, A., Goudarzi, G., Nikfal, A. & Baneshi, M. M. Temporal profile of PM10 and associated health effects in one of the most polluted cities of the world (Ahvaz, Iran) between 2009 and 2014. Aeolian Res. 22, 135–140 (2016).
Google Scholar
Medina, S., Le Tertre, A. & Saklad, M. The Apheis project: Air pollution and health—A European information system. Air Qual. Atmos. Heal. 2, 185–198 (2009).
Google Scholar
Medina, S., Plasencia, A., Ballester, F., Mücke, H. & Schwartz, J. Apheis: Public health impact of PM10 in 19 European cities. J. Epidemiol. Community Heal. 58, 831–836 (2004).
Google Scholar
Pérez-Martínez, P. J., de Fátima Andrade, M. & de Miranda, R. M. Traffic-related air quality trends in São Paulo, Brazil. J. Geophys. Res. Atmos. 120, 6290–6304 (2015).
Google Scholar
Sánchez-Ccoyllo, O. R. et al. Vehicular particulate matter emissions in road tunnels in Sao Paulo, Brazil. Environ. Monitoring Assess. 149, 241–249 (2009).
Google Scholar
Ribeiro, H. & de Assunção, J. V. Historical overview of air pollution in São Paulo Metropolitan Area, Brazil: Influence of mobile sources and related health effects. WIT Trans. Built Environ. 52,10 (2001).
Bravo, M. A. & Bell, M. L. Spatial heterogeneity of PM10 and O3 in São Paulo, Brazil, and implications for human health studies. J. Air Waste Manag. Assoc. 61, 69–77 (2011).
Google Scholar
De Freitas, E. D., Martins, L. D., da Silva Dias, P. L. & de Fátima Andrade, M. A simple photochemical module implemented in rams for tropospheric ozone concentration forecast in the metropolitan area of Sao Paulo, Brazil: Coupling and validation. Atmos. Environ. 39, 6352–6361 (2005).
Google Scholar
Encalada-Malca, A. A., Cochachi-Bustamante, J. D., Rodrigues, P. C., Salas, R. & López-Gonzales, J. L. A spatio-temporal visualization approach of PM10 concentration data in Metropolitan Lima. Atmosphere 12, 609 (2021).
Google Scholar
do Meio Ambiente, C. N. Institutes the national air quality control programee. Tech. Rep., Official Journal of the Federative Republic of Brazil (1989).
do Meio Ambiente, C. N. Sets standards of primary and secondary air quality and even the criteria for acute episodes of air pollution. Tech. Rep., Official Journal of the Federative Republic of Brazil (1990).
Artaxo, P. O estado da qualidade do ar no brasil. Work. Pap. WRI Brasil 32 (2021).
Costa, A. F., Hoek, G., Brunekreef, B. & Ponce de Leon, A. C. Air pollution and deaths among elderly residents of Sao Paulo, Brazil: An analysis of mortality displacement. Environ. Health Perspectives 125, 349–354 (2017).
Google Scholar
Bravo, M. A., Son, J., De Freitas, C. U., Gouveia, N. & Bell, M. L. Air pollution and mortality in São Paulo, Brazil: Effects of multiple pollutants and analysis of susceptible populations. J. Exposure Sci. Environ. Epidemiol. 26, 150–161 (2016).
Google Scholar
Chiarelli, P. S. et al. The association between air pollution and blood pressure in traffic controllers in Santo André, São Paulo, Brazil. Environ. Res. 111, 650–655 (2011).
Google Scholar
Ventura, L. M. B., de Oliveira Pinto, F., Soares, L. M., Luna, A. S. & Gioda, A. Forecast of daily PM2.5 concentrations applying artificial neural networks and holt-winters models. Air Qual. Atmos. Heal. 12, 317–325 (2019).
Google Scholar
Leão, M. L. P., Zhang, L. & da Silva Júnior, F. M. R. Effect of particulate matter (PM2.5 and PM10) on health indicators: Climate change scenarios in a Brazilian Metropolis. Environ. Geochem. Heal. 44, 1–12 (2022).
Habermann, M. & Gouveia, N. Application of land use regression to predict the concentration of inhalable particular matter in São Paulo City, Brazil. Engenharia Sanit. e Ambiental 17, 155–162 (2012).
Google Scholar
Braga, A. L. F., Pereira, L. A. A., Procópio, M., André, P. A. D. & Saldiva, P. H. D. N. Association between air pollution and respiratory and cardiovascular diseases in Itabira, Minas Gerais State. Brazil. Cadernos de Saúde Pública 23, S570–S578 (2007).
Google Scholar
Pinto, W. D. P., Reisen, V. A. & Monte, E. Z. Previsão da concentração de material particulado inalável, na região da grande vitória, ES, Brasil, utilizando o modelo sarimax. Engenharia Sanitária e Ambiental 23, 307–318 (2018).
Google Scholar
Schornobay-Lui, E. et al. Prediction of short and medium term PM10 concentration using artificial neural networks. Manag. Environ. Qual. An Int. J. 30, 414–436 (2018).
Neto, P. S. D. M. et al. Neural-based ensembles for particulate matter forecasting. IEEE Access 9, 14470–14490 (2021).
Google Scholar
Albuquerque Filho, F. S. D., Madeiro, F., Fernandes, S. M., de Mattos Neto, P. S. & Ferreira, T. A. Time-series forecasting of pollutant concentration levels using particle swarm optimization and artificial neural networks. Química Nova 36, 783–789 (2013).
Lei, T. M., Siu, S. W., Monjardino, J., Mendes, L. & Ferreira, F. Using machine learning methods to forecast air quality: A case study in Macao. Atmosphere 13, 1412 (2022).
Google Scholar
Yu, T. et al. Study on the regional prediction model of PM2.5 concentrations based on multi-source observations. Atmos. Pollut. Res. 13, 101363 (2022).
Google Scholar
Li, J., Xu, G. & Cheng, X. Combining spatial pyramid pooling and long short-term memory network to predict PM2.5 concentration. Atmos. Pollut. Res. 13, 101309 (2022).
Google Scholar
Cordova, C. H. et al. Air quality assessment and pollution forecasting using artificial neural networks in Metropolitan Lima-Peru. Sci. Rep. 11, 1–19 (2021).
Google Scholar
Plocoste, T., Calif, R. & Jacoby-Koaly, S. Temporal multiscaling characteristics of particulate matter PM10 and ground-level ozone O3 concentrations in caribbean region. Atmos. Environ. 169, 22–35 (2017).
Google Scholar
Calif, R. & Schmitt, F. G. Multiscaling and joint multiscaling description of the atmospheric wind speed and the aggregate power output from a wind farm. Nonlinear Process. Geophys. 21, 379–392 (2014).
Google Scholar
Hyndman, R. J. & Khandakar, Y. Automatic time series forecasting: The forecast package for r. J. Stat. Softw. 27, 1–22 (2008).
Google Scholar
Harvey, A. C. Forecasting, structural time series models and the Kalman filter (Cambridge University Press, 1990).
Google Scholar
Zhang, G. P. Time series forecasting using a hybrid arima and neural network model. Neurocomputing 50, 159–175 (2003).
Google Scholar
Liao, T. W. Clustering of time series data—A survey. Pattern Recognit. 38, 1857–1874 (2005).
Google Scholar
Bell, M. L., Samet, J. M. & Dominici, F. Time-series studies of particulate matter. Annu. Rev. Public Heal. 25, 247–280 (2004).
Google Scholar
Hyndman, R. J. & Athanasopoulos, G. Forecasting: Principles and Practice (OTexts, 2018).
Box, G. E., Hillmer, S. C. & Tiao, G. C. Analysis and modeling of seasonal time series. in Seasonal analysis of economic time series, 309–344 (NBER, 1978).
Sulandari, W., Suhartono, Subanar & Rodrigues, P. C. Exponential smoothing on modeling and forecasting multiple seasonal time series: An overview. Fluctuation Noise Lett. 20, 2130003 (2021).
Google Scholar
Rodrigues, P. C., Awe, O. O., Pimentel, J. S. & Mahmoudvand, R. Modelling the behaviour of currency exchange rates with singular spectrum analysis and artificial neural networks. Stats 3, 137–157 (2020).
Google Scholar
Sako, K., Mpinda, B. N. & Rodrigues, P. C. Neural networks for financial time series forecasting. Entropy 24, 657 (2022).
Google Scholar
Coelho, Leite et al. Statistical and artificial neural networks models for electricity consumption forecasting in the Brazilian industrial sector. Energies 15, 588 (2022).
Google Scholar
Sulandari, W., Subanar, S., Lee, M. H. & Rodrigues, P. C. Time series forecasting using singular spectrum analysis, fuzzy systems and neural networks. MethodsX 7, 101015 (2020).
Google Scholar
Sulandari, W. et al. Indonesian electricity load forecasting using singular spectrum analysis, fuzzy systems and neural networks. Energy 190, 116408 (2020).
Google Scholar
Rodrigues, P. C. & Mahmoudvand, R. The benefits of multivariate singular spectrum analysis over the univariate version. J. Frankl. Inst. 355, 544–564 (2018).
Google Scholar
Source: Ecology - nature.com