in

Strong temporal variation of consumer δ13C value in an oligotrophic reservoir is related to water level fluctuation

  • Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718 (2002).

    Article 

    Google Scholar 

  • Fry, B. Stable Isotope Ecology (Springer, 2007).

    Google Scholar 

  • Boon, P. I. & Bunn, S. E. Variations in the stable isotope composition of aquatic plants and their implications for food web analysis. Aquat. Bot. 48, 99–108 (1994).

    Article 

    Google Scholar 

  • Kling, G. W., Fry, B. & O’Brien, W. J. Stable isotopes and planktonic trophic structure in arctic lakes. Ecology 73, 561–566 (1992).

    Article 

    Google Scholar 

  • Nielsen, J. M., Clare, E. L., Hayden, B., Brett, M. T. & Kratina, P. Diet tracing in ecology: Method comparison and selection. Methods Ecol. Evol. 9, 278–291 (2018).

    Article 

    Google Scholar 

  • Coulter, A. A., Swanson, H. K. & Goforth, R. R. Seasonal variation in resource overlap of invasive and native fishes revealed by stable isotopes. Biol. Invasions 21, 315–321 (2019).

    Article 

    Google Scholar 

  • Jung, A. S., Van Der Veer, H. W., Van Der Meer, M. T. & Philippart, C. J. Seasonal variation in the diet of estuarine bivalves. PLoS One 14, e0217003 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Devlin, S. P., Vander Zanden, M. J. & Vadeboncoeur, Y. Depth-specific variation in carbon isotopes demonstrates resource partitioning among the littoral zoobenthos. Freshw. Biol. 58, 2389–2400 (2013).

    CAS 

    Google Scholar 

  • Possamai, B., Vieira, J. P., Grimm, A. M. & Garcia, A. M. Temporal variability (1997–2015) of trophic fish guilds and its relationships with El Niño events in a subtropical estuary. Estuar. Coast. Shelf Sci. 202, 145–154 (2018).

    Article 
    ADS 

    Google Scholar 

  • Syvaranta, J., Hamalainen, H. & Jones, R. I. Within-lake variability in carbon and nitrogen stable isotope signatures. Freshw. Biol. 51, 1090–1102 (2006).

    Article 
    CAS 

    Google Scholar 

  • Janbu, A. D., Paasche, Ø. & Talbot, M. R. Paleoclimate changes inferred from stable isotopes and magnetic properties of organic-rich lake sediments in Arctic Norway. J. Paleolimnol. 46, 29 (2011).

    Article 
    ADS 

    Google Scholar 

  • Leng, M. et al. Late quaternary palaeoenvironmental reconstruction from Lakes Ohrid and Prespa (Macedonia/Albania border) using stable isotopes. Biogeosciences 7, 3109–3122 (2010).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Jiang, Q., Shen, J., Liu, X., Zhang, E. & Xiao, X. A high-resolution climatic change since holocene inferred from multi-proxy of lake sediment in westerly area of China. Chin. Sci. Bull. 52, 1970–1979 (2007).

    Article 

    Google Scholar 

  • Finlay, J. C. & Kendall, C. Stable isotope tracing of temporal and spatial variability in organic matter sources to freshwater ecosystems. Stable Isot. Ecol. Environ. Sci. 2, 283–333 (2007).

    Article 

    Google Scholar 

  • Harvey, C. J. & Kitchell, J. F. A stable isotope evaluation of the structure and spatial heterogeneity of a Lake Superior food web. Can. J. Fish. Aquat. Sci. 57, 1395–1403 (2000).

    Article 
    CAS 

    Google Scholar 

  • Xu, D. et al. Spatial heterogeneity of food web structure in a large shallow eutrophic lake (Lake Taihu, China): Implications for eutrophication process and management. J. Freshw. Ecol. 34, 229–245 (2019).

    Article 
    CAS 

    Google Scholar 

  • Ruokonen, T., Kiljunen, M., Karjalainen, J. & Hämäläinen, H. Invasive crayfish increase habitat connectivity: A case study in a large boreal lake. Knowl. Manag. Aquat. Ecosyst. https://doi.org/10.1051/kmae/2013034 (2012).

    Article 

    Google Scholar 

  • Veselý, L. et al. The crayfish distribution, feeding plasticity, seasonal isotopic variation and trophic role across ontogeny and habitat in a canyon-shaped reservoir. Aquat. Ecol. 54, 1169–1183 (2020).

    Article 

    Google Scholar 

  • Kalff, J. Limnology: Inland Water Ecosystems Vol. 592 (Prentice Hall, 2002).

    Google Scholar 

  • Polačik, M., Harrod, C., Blažek, R. & Reichard, M. Trophic niche partitioning in communities of African annual fish: Evidence from stable isotopes. Hydrobiologia 721, 99–106 (2014).

    Article 

    Google Scholar 

  • Costalago, D., Navarro, J., Álvarez-Calleja, I. & Palomera, I. Ontogenetic and seasonal changes in the feeding habits and trophic levels of two small pelagic fish species. Mar. Ecol. Prog. Ser. 460, 169–181 (2012).

    Article 
    ADS 

    Google Scholar 

  • Matthews, B. & Mazumder, A. Consequences of large temporal variability of zooplankton δ15N for modeling fish trophic position and variation. Limnol. Oceanogr. 50, 1404–1414 (2005).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Taipale, S., Kankaala, P., Tiirola, M. & Jones, R. I. Whole-lake dissolved inorganic 13C additions reveal seasonal shifts in zooplankton diet. Ecology 89, 463–474 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Zohary, T., Erez, J., Gophen, M., Berman-Frank, I. & Stiller, M. Seasonality of stable carbon isotopes within the pelagic food web of Lake Kinneret. Limnol. Oceanogr. 39, 1030–1043 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Stenroth, P. et al. Stable isotopes as an indicator of diet in omnivorous crayfish (Pacifastacus leniusculus): The influence of tissue, sample treatment, and season. Can. J. Fish. Aquat. Sci. 63, 821–831 (2006).

    Article 
    CAS 

    Google Scholar 

  • R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ (2021).

  • Moore, J. W. & Semmens, B. X. Incorporating uncertainty and prior information into stable isotope mixing models. Ecol. Lett. 11, 470–480 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Stock, B. C. & Semmens, B. X. Unifying error structures in commonly used biotracer mixing models. Ecology 97, 2562–2569 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Irz, P., Laurent, A., Messad, S., Pronier, O. & Argillier, C. Influence of site characteristics on fish community patterns in French reservoirs. Ecol. Freshw. Fish 11, 123–136 (2002).

    Article 

    Google Scholar 

  • Sutela, T., Aroviita, J. & Keto, A. Assessing ecological status of regulated lakes with littoral macrophyte, macroinvertebrate and fish assemblages. Ecol. Indic. 24, 185–192 (2013).

    Article 

    Google Scholar 

  • Hunt, P. & Jones, J. The effect of water level fluctuations on a littoral fauna. J. Fish Biol. 4, 385–394 (1972).

    Article 

    Google Scholar 

  • Kaster, J. & Jacobi, G. Benthic macroinvertebrates of a fluctuating reservoir. Freshw. Biol. 8, 283–290 (1978).

    Article 

    Google Scholar 

  • Kraft, K. The effect of unnatural water level fluctuations on benthic invertebrates in Voyageurs National Park. Research⁄Resources Management Report MWR-12. US Department of the Interior, National Park Service. International Falls, Minnesota (1988).

  • Glon, M., Larson, E. R. & Pangle, K. Comparison of 13C and 15N discrimination factors and turnover rates between congeneric crayfish Orconectes rusticus and O. virilis (Decapoda, Cambaridae). Hydrobiologia 768, 51–61 (2016).

    Article 
    CAS 

    Google Scholar 

  • Hesslein, R. H., Hallard, K. & Ramlal, P. Replacement of sulfur, carbon, and nitrogen in tissue of growing broad whitefish (Coregonus nasus) in response to a change in diet traced by δ34S, δ13C, and δ15N. Can. J. Fish. Aquat. Sci. 50, 2071–2076 (1993).

    Article 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Creating the steps to make organizational sustainability work

    No impact of nitrogen fertilization on carbon sequestration in a temperate Pinus densiflora forest