in

The greater wax moth, Galleria mellonella (L.) uses two different sensory modalities to evaluate the suitability of potential oviposition sites

  • Refsnider, J. M. & Janzen, F. J. Putting eggs in one basket: Ecological and evolutionary hypotheses for variation in oviposition-site choice. Annu. Rev. Ecol. Evol. Syst. 41, 39–57 (2010).

    Article 

    Google Scholar 

  • Rudolf, V. H. W. & Rodel, M. O. Oviposition site selection in a complex and variable environment: The role of habitat quality and conspecific cues. Oecologia 142, 316–325 (2005).

    Article 
    ADS 

    Google Scholar 

  • Blaustein, L. Oviposition site selection in response to risk of predation: Evidence from aquatic habitats and consequences for population dynamics and community structure. In Evolutionary Theory and Processes: Modern Perspectives (ed. Wasser, S. P.) 441–456 (Springer, 1999).

    Chapter 

    Google Scholar 

  • Elsensohn, J. E., Schal, C. & Burrack, H. J. Plasticity in oviposition site selection behavior in drosophila suzukii (diptera: drosophilidae) in relation to adult density and host distribution and quality. J. Econ. Entomol. 114, 1517–1522 (2021).

    Article 

    Google Scholar 

  • Kempraj, V., Park, S. J. & Taylor, P. W. Forewarned is forearmed: Queensland fruit flies detect olfactory cues from predators and respond with predator-specific behaviour. Sci. Rep. 10, 7297 (2020).

    Article 
    ADS 

    Google Scholar 

  • Damodaram, K. J. P. et al. Centuries of domestication has not impaired oviposition site-selection function in the silkmoth, Bombyx mori. Sci. Rep. 4, 1–6 (2014).

    Google Scholar 

  • Hansson, B. S. & Stensmyr, M. C. Evolution of insect olfaction. Neuron 72, 698–711 (2011).

    Article 

    Google Scholar 

  • Ghosh, E., Sasidharan, A., Ode, P. J. & Venkatesan, R. Oviposition preference and performance of a specialist herbivore is modulated by natural enemies, larval odors, and immune status. J. Chem. Ecol. 48, 670–682 (2022).

    Article 

    Google Scholar 

  • Nielsen, R. A. & Brister, C. D. The greater wax moth: Adult behavior. Ann. Entomol. Soc. Am. 70, 101–103 (1977).

    Article 

    Google Scholar 

  • Kwadha, C. A., Ong’Amo, G. O., Ndegwa, P. N., Raina, S. K. & Fombong, A. T. The biology and control of the greater wax moth, Galleria mellonella. Insects 8, 61 (2017).

    Article 

    Google Scholar 

  • Kebede, E. Prevalence of wax moth in modern hive with colonies in Kafta Humera. Anim. Vet. Sci. 3, 132–135 (2015).

    Article 

    Google Scholar 

  • Ellis, J. D., Graham, J. R. & Mortensen, A. Standard methods for wax moth research. J. Apic. Res. 52, 1–17 (2013).

    Article 

    Google Scholar 

  • Hepburn, H. R. & Radloff, S. E. Honeybees of Africa 227–241 (Springer, 1998). https://doi.org/10.1007/978-3-662-03604-4.

    Book 

    Google Scholar 

  • Fletcher, D. J. C. The African Bee, Apis mellifera adansonii, Africa. Annu. Rev. Entomol. 23, 151–171 (1978).

    Article 

    Google Scholar 

  • Li, Y. et al. Losing the arms race: Greater wax moths sense but ignore bee alarm pheromones. Insects 10, 81 (2019).

    Article 
    ADS 

    Google Scholar 

  • Feng, B., Qian, K. & Du, Y. J. Floral volatiles from Vigna unguiculata are olfactory and gustatory stimulants for oviposition by the bean pod borer moth Maruca vitrata. Insects 8, 60 (2017).

    Article 

    Google Scholar 

  • Janz, N. Evolutionary ecology of oviposition strategies. In Chemoecology of Insect Eggs and Egg Deposition (eds Hilker, M. & Meiners, T.) 349–376 (Willey, 2008). https://doi.org/10.1002/9780470760253.ch13.

    Chapter 

    Google Scholar 

  • Renwick, J. A. A. & Chew, F. S. Oviposition behavior in lepidoptera. Annu. Rev. Entomol. 39, 377–400 (1994).

    Article 

    Google Scholar 

  • Nakajima, Y. & Fujisaki, K. Fitness trade-offs associated with oviposition strategy in the winter cherry bug, Acanthocoris sordidus. Entomol. Exp. Appl. 137, 280–289 (2010).

    Article 

    Google Scholar 

  • Murphy, P. J. Context-dependent reproductive site choice in a Neotropical frog. Behav. Ecol. 14, 626–633 (2003).

    Article 

    Google Scholar 

  • Geoffrey, G. et al. Larviposition site selection mediated by volatile semiochemicals in Glossina palpalis gambiensis. Ecol. Entomol. 46, 301–309 (2021).

    Article 

    Google Scholar 

  • Yao, F. L. et al. Oviposition preference and adult performance of the whitefly predator Serangium japonicum (Coleoptera: Coccinellidae): Effect of leaf microstructure associated with ladybeetle attachment ability. Pest Manag. Sci. 77, 113–125 (2021).

    Article 

    Google Scholar 

  • Spieler, M. & Linsenmair, K. E. Choice of optimal oviposition sites by Hoplobatrachus occipitalis (Anura: Ranidae) in an unpredictable and patchy environment. Oecologia 109, 184–199 (1997).

    Article 
    ADS 

    Google Scholar 

  • Figiel, C. R. & Semlitsch, R. D. Experimental determination of oviposition site selection in the marbled salamander, Ambystoma opacum. J. Herpetol. 29, 452 (1995).

    Article 

    Google Scholar 

  • Kotler, B. P. & Mitchell, W. A. The effect of costly information in diet choice. Evol. Ecol. 9, 18–29 (1995).

    Article 

    Google Scholar 

  • Nylin, S. & Janz, N. Oviposition preference and larval performance in Polygonia c-album (Lepidoptera: Nymphalidae): the choice between bad and worse. Ecol. Entomol. 18, 394–398 (1993).

    Article 

    Google Scholar 

  • Nagaya, H., Stewart, F. J. & Kinoshita, M. Swallowtail butterflies use multiple visual cues to select oviposition sites. Insects 12, 1047 (2021).

    Article 

    Google Scholar 

  • Scolari, F., Valerio, F., Benelli, G., Papadopoulos, N. T. & Vaníčková, L. Tephritid fruit fly semiochemicals: Current knowledge and future perspectives. Insects 12, 408 (2021).

    Article 

    Google Scholar 

  • Haverkamp, A., Hansson, B. S. & Knaden, M. Combinatorial codes and labelled lines: How insects use olfactory cues to find and judge food, mates, and oviposition sites in complex environments. Front. Physiol. 9, 49 (2018).

    Article 

    Google Scholar 

  • Ichinosé, T., Honda, H. & Honda, H. Ovipositional behavior of papilio protenor demetrius Cramer and the factors involved in its host plants. Appl. Entomol. Zool. 13, 103–114 (1978).

    Article 

    Google Scholar 

  • Spangler, H. G. Functional and temporal analysis of sound production in Galleria mellonella L. (Lepidoptera: Pyralidae). J. Comp. Physiol. A 159, 751–756 (1986).

    Article 

    Google Scholar 

  • Spangler, H. G. & Takessian, A. Sound perception by two species of wax moths (Lepidoptera: Pyralidae). Ann. Entomol. Soc. Am. 76, 94–97 (1983).

    Article 

    Google Scholar 

  • Skals, N. & Surlykke, A. Hearing and evasive behaviour in the greater wax moth, Galleria mellonella (Pyralidae). Physiol. Entomol. 25, 354–362 (2008).

    Article 

    Google Scholar 

  • Kwadha, C. A. Determination of Attractant Semio-Chemicals of the Wax Moth, Galleria mellonella L., in Honeybee Colonies. M.Sc. Thesis, University of Nairobi, Kenya (2017).

  • Pickard, S. C., Quinn, R. D. & Szczecinski, N. C. A dynamical model exploring sensory integration in the insect central complex substructures. Bioinspir. Biomim. 15, 026003. https://doi.org/10.1088/1748-3190/ab57b6 (2020).

    Article 
    ADS 

    Google Scholar 

  • Kamala Jayanthi, P. D., Saravan Kumar, P. & Vyas, M. Odour cues from fruit arils of artocarpus heterophyllus attract both sexes of oriental fruit flies. J. Chem. Ecol. 47, 552–563 (2021).

    Article 

    Google Scholar 

  • Anfora, G., Tasin, M., de Cristofaro, A., Ioriatti, C. & Lucchi, A. Synthetic grape volatiles attract mated Lobesia botrana females in laboratory and field bioassays. J. Chem. Ecol. 35, 1054–1062 (2009).

    Article 

    Google Scholar 

  • Fand, B. B. et al. Bacterial volatiles from mealybug honeydew exhibit kairomonal activity toward solitary endoparasitoid Anagyrus dactylopii. J. Pest Sci. 93, 195–206 (2020).

    Article 

    Google Scholar 

  • Kovats, E. Gas chromatographic characterization of organic substances in the retention index system. Adv. Chromotogr. 1, 229–247 (1965).

    Google Scholar 


  • Source: Ecology - nature.com

    Ian Hutchinson: A lifetime probing plasma, on Earth and in space

    New MIT internships expand research opportunities in Africa