in

The impact of the striped field mouse’s range expansion on communities of native small mammals

[adace-ad id="91168"]
  • Wilkinson, D. M. Dispersal biogeography. Encyclopedia of Life Science. (Nature Publishing Group, 2001).

  • Jan, P.L. et al. Range expansion is associated with increased survival and fecundity in a long-lived bat species. Proc. R. Soc. B. 286, 1–9. https://doi.org/10.1098/rspb.2019.0384 (2019).

    Article 

    Google Scholar 

  • IUCN. IUCN Guidelines for the Prevention of Biodiversity Loss Caused by Alien Invasive Species. https://portals.iucn.org/library/node/12413(2000).

  • McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biological Conservation 127, 247–260. https://doi.org/10.1016/j.biocon.2005.09.005 (2006).

    Google Scholar 

  • Galko, J. et al. Invázne a nepôvodné druhy v lesoch Slovenska: hmyz—huby—rastliny. (Národné lesnícke centrum, 2018).

  • Lockwood, J. L., Hoopes, M. F. & Marchetti, M. P. Invasion ecology_draft_2ed. (John Wiley & Sons, 2013).

  • Colautti, R. I. & MacIsaac, H. J. A neutral terminology to define ‘invasive’ species: Defining invasive species. Divers. Distrib. 10, 135–141. https://doi.org/10.1111/j.1366-9516.2004.00061.x (2004).

    Article 

    Google Scholar 

  • Ambros, M., Dudich, A., MIKLÓS, P., Stollmann, A. & Žiak, D. Ryšavka tmavopása (Apodemus agrarius)–novỳ druh cicavca Podunajskej roviny (Rodentia: Muridae). Lynx, series nova 41, (2010).

  • Bradley, B. A. et al. Disentangling the abundance—impact relationship for invasive species. Proc. Natl. Acad. Sci. 116, 9919–9924. https://doi.org/10.5281/zenodo.2605254 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Nackley, L. L., West, A. G., Skowno, A. L. & Bond, W. J. The nebulous ecology of native invasions. Trends Ecol. Evol. 32, 814–824. https://doi.org/10.1016/j.tree.2017.08.003 (2017).

    Article 

    Google Scholar 

  • Archer, S. Tree-grass dynamics in a Prosopis-thornscrub savanna parkland: reconstructing the past and predicting the future. Ecoscience 2, 83–99. https://doi.org/10.1080/11956860.1995.11682272 (1995).

    Article 

    Google Scholar 

  • Wigley, B. J., Bond, W. J. & Hoffman, M. T. Thicket expansion in a South African savanna under divergent land use: local vs. global drivers? Global Change Biol. 16, 964–976. https://doi.org/10.1111/j.1365-2486.2009.02030.x (2010).

  • Spiegel, C. S., Hart, P. J., Woodworth, B. L., Tweed, E. J. & LeBrun, J. J. Distribution and abundance of forest birds in low-altitude habitat on Hawai’i Island: Evidence for range expansion of native species. Bird Conserv. Int. 16, 175–185. https://doi.org/10.1017/S0959270906000244 (2006).

    Article 

    Google Scholar 

  • Livezey, K. B. Range expansion of Barred Owls, part II: facilitating ecological changes. Am. Midland Nat. 323–349 (2009).

  • Veech, J. A., Small, M. F. & Baccus, J. T. The effect of habitat on the range expansion of a native and an introduced bird species. J. Biogeogr. 38, 69–77. https://doi.org/10.1111/j.1365-2699.2010.02397.x (2011).

    Article 

    Google Scholar 

  • Krupa, J. J. & Haskins, K. E. Invasion of the meadow vole (Microtus pennsylvanicus) in southeastern Kentucky and its possible impact on the southern bog lemming (Synaptomys cooperi). American Midland Naturalist 14–22 (1996).

  • Jareño, D. et al. Factors associated with the colonization of agricultural areas by common voles Microtus arvalis in NW Spain. Biol. Invasions 17, 2315–2327. https://doi.org/10.1007/s10530-015-08774 (2015).

    Article 

    Google Scholar 

  • Malygin, V. M., Baskevich, M. I. & Khlyap, L. A. Invasions of the common vole sibling species. Russ. J. Biol. Invas. 11, 47–65 (2020).

    Article 

    Google Scholar 

  • Tong, X., Wang, R. & Chen, X.-Y. Expansion or invasion? A Response to Nackley et al. Trends Ecol. Evol. 33, 234–235. https://doi.org/10.1016/j.tree.2018.01.008 (2018).

  • Thompson, K. & Davis, M. A. Why research on traits of invasive plants tell us very little. Trends Ecol. Evol. 24,115–116. https://doi.org/10.1016/j.tree.2011.01.007 (2011).

  • Davis, M. A. & Thompson, K. Eight ways to be a colonizer; two ways to be an invader: A proposed nomenclature scheme for invasion ecology. Bull. Ecol. Soc. Am. 81, 226–230 (2000).

    Google Scholar 

  • Davis, M. A., Thompson, K., Grime, J. P. & Charles, S. Elton and the dissociation of invasion ecology from the rest of ecology. Diversity and Distribution 7, 97–102. https://doi.org/10.1046/j.1472-4642.2001.00099.x (2001).

    Article 

    Google Scholar 

  • Davis, M. A. Invasion biology. (Oxford University Press on Demand, 2009).

  • Davis, M. A. et al. Don’t judge species on their origins. Nature 474, 153–154 (2011).

    Article 
    CAS 

    Google Scholar 

  • Klempa, B. et al. Complex evolution and epidemiology of Dobrava-Belgrade hantavirus: Definition of genotypes and their characteristics. Adv. Virol. 158, 521–529. https://doi.org/10.1007/s00705-012-1514-5 (2013).

    CAS 

    Google Scholar 

  • Kraljik, J. et al. Genetic diversity of Bartonella genotypes found in the striped field mouse (Apodemus agrarius) in Central Europe. Parasitology 143, 1437–1442. https://doi.org/10.1017/S0031182016000962 (2016).

    Article 

    Google Scholar 

  • Latinne, A. et al. Phylogeography of the striped field mouse, Apodemus agrarius (Rodentia: Muridae), throughout its distribution range in the Palaearctic region. Mamm. Biol. 100, 19–31. https://doi.org/10.1007/s42991-019-00001-0 (2020).

    Article 

    Google Scholar 

  • Dudich, A. & Szabó, I. Über die Verbreitung der Hystrichopsylla Taschenberg, 1880 (Siphonaptera) in Ungarn. Folia Entomol. Hung 45, 27–32 (1984).

    Google Scholar 

  • Dudich, A. Dynamika areálu ryšavky tmavopásej (Apodemus agrarius Pall.)–expanzia či invázia. Pp.: 53–62. Invázie a invázne organizmy. SEKOS pre SNK SCOPE, Nitra (1997).

  • Karaseva, E. V., Tikhonova, G. N. & Bogomolov, P. L. Distribution of the Striped field mouse (Apodemus agrarius) and peculiarities of its ecology in different parts of its range. Zoologičeskij žurnal 71, 106–115 (1992).

    Google Scholar 

  • Polechová, J. & Graciasová, R. Návrat myšice temnopásé, Apodemus agrarius (Rodentia: Muridae) na jižní Moravu. Lynx (Praha), ns 31, 153–155 (2000).

  • Bryja, J. & Řehák, Z. Další doklady současné expanze areálu myšice temnopásé (Apodemus agrarius) na Moravě. Lynx (Praha), ns (2002).

  • Herzig-Straschil, B., Bihari, Z. & Spitzenberger, F. Recent changes in the distribution of the field mouse (Apodemus agrarius) in the western part of the Carpathian basin. Annalen des Naturhistorischen Museums in Wien. Serie B für Botanik und Zoologie 421–428 (2003).

  • Dudich, A., Ambros, M., Stollmann, A., Uhrin, M. & Urban, P. Ryšavka tmavopása Apodemus agrarius (Pallas) v Novohrade. Príroda okresu Veľký Krtíš – 15 rokov od celoslovenského tábora ochrancov prírody 110–115 (2003).

  • Horáček, I. & Ložek, V. Biostratigraphic investigation in the Hámorská cave (Slovak karst). Pp.: 49–60. Krasové sedimenty. Fosilní záznam klimatickỳch oscilací a změn prostředí. Knihovna České speleologické společnosti, Svazek 21, (1993).

  • Pazonyi, P. & Kordos, L. Late Eemian (Late Pleistocene) vertebrate fauna from the Horváti-lik (Uppony, NE Hungary). Fragmenta Palaeontologica Hungarica 22, 107–117 (2004).

    Google Scholar 

  • Obuch, J., Danko, S. & Noga, M. Recent and subrecent diet of the barn owl (Tyto alba) in Slovakia. Slovak Raptor J. 10, 1–50 . https://doi.org/10.1515/srj-2016-0003 (2016).

    Article 

    Google Scholar 

  • Obuch, J. Temporal changes in proportions of small mammals in the diet of the mammalian and avian predators in Slovakia. Lynx, n. s 55, 86–106. https://doi.org/10.37520/lynx.2021.007 (2022).

  • Niethammer, J. Die Verbreitung der Brandmaus (Apodemus agrarius) in der Bundesrepublik Deutschland. Acta Sc. Nat. Brno 10, 43–55 (1976).

    Google Scholar 

  • von Lehmann, E. Die Brandmaus in Hessen als Beispiel für die Problematik der Verbreitungsgrenzen vieler Säugetierarten. Natur und Museum 106, 112–117.

  • Farský, O. Úlovky myšice temnopásé, Apodemus agrarius (Pallas), na Moravě a ve Slezsku v letech 1920 až 1940 [Caughts of the striped field mouse, Apodemus agrarius (Pallas), in Moravia and Silesia in the years 1920–1940]. Lynx, n. s 5, 11–18 (1965).

  • Heroldová, M., Homolka, M. & Zejda, J. Některé nepublikované nálezy Apodemus agrarius v Čechách a na Moravě v návaznosti na současnỳ stav znalostí o jejím rozšíření (Rodentia: Muridae). Lynx, series nova 44, (2013).

  • Ambros, M., Dudich, A. & Stollmann, A. Fauna drobných hmyzožravcov a hlodavcov (Insectivora, Rodentia) vybraných mokraďných biotopov južného Slovenska. Rosalia (Nitra) 14, 195–202 (1999).

    Google Scholar 

  • Balát, F. Potrava sovy pálené na jižní Moravě a na jižním Slovensku [Food of Barn owl on the south Moravia and south Slovakia]. Zoologické listy 5, 237–256 (1956).

    Google Scholar 

  • Baláž, I., Stollmann, A., Ambros, M. & Dudich, A. Drobné cicavce rezervácie Lohótsky močiar. Chránené územia Slovenska 58, 27–29 (2003).

    Google Scholar 

  • Bridišová, Z., Baláž, I. & Ambros, M. Drobné cicavce prírodnej rezervácie Alúvium Žitavy [Small mammals of Alúvium Žitavy natural reservation]. Chránené územia Slovenska 69, 7–9 (2006).

    Google Scholar 

  • Dudich, A., Lysỳ, J. & Štollmann, A. Súčasné poznatky o rozšírení drobnỳch zemnỳch cicavcov (Insectivora, Rodentia) južnej časti Podunajskej nížiny. Spravodaj Oblastného múzea v Komárne, Prírodné vedy 5, 157–186 (1985).

    Google Scholar 

  • Kristofik, J. Small mammals in floodplain forests. Folia Zoologica (Czech Republic) (1999).

  • Méhely, L. Két új poczokfaj a magyar faunában. Állattani közlemények 7, 3–14 (1908).

    Google Scholar 

  • Noga, M. The wintering and food ecology of Long-eared Owl in South-Western part of Slovakia (Comenius University in Bratislava, 2007).

    Google Scholar 

  • Pachinger, K., Novackỳ, M., Facuna, V. & Ambruš, B. Dynamika a zloženie synúzií mikromammálií na izolovanỳch ostrovoch vnútozemskej delty Dunaja v oblasti vodného diela Gabčíkovo. Acta Environ. Universitatis Comenianae 9, 71–77 (1997).

    Google Scholar 

  • Poláčiková, Z. Small terrestrial mammals’ (Eulipotyphla, Rodentia) synusia of selected localities in western Slovakia. Ekológia (Bratislava) 29, 131–139. https://doi.org/10.4149/ekol_2010_02_131 (2010).

    Google Scholar 

  • Reiterová, K. et al. Úloha drobnỳch cicavcov–dôležitỳch rezervoárov v cirkulácii larválnej toxoplazmózy. Slovenskỳ Veterinárny Časopis 4, 217–222 (2010).

    Google Scholar 

  • Stanko, M., Mošanský, L. & Fričová, J. Small mammal communities (Eulipotyphla, Rodentia) of the middle part of alluvium Ipeľ river (Lučenská and Ipeľská basins). Ochrana prírody 26, 43–52 (2010).

    Google Scholar 

  • Spitzenberger, F. & Engelberg, S. A new look at the dynamic western distribution border of Apodemus agrarius in Central Europe (Rodentia: Muridae). Lynx, series nova 45, (2014).

  • Sládkovičová, V. H., Žiak, D. & Miklós, P. Synúzie drobných zemných cicavccov mokradných biotopov Podunajskej roviny. Folia faunistica Slovaca 18, 13–19 (2013).

    Google Scholar 

  • Tulis, F. et al. Expansion of the Striped field mouse (Apodemus agrarius) in the south-western Slovakia during 2010–2015. Folia Oecologica 43, 64–73 (2016).

    Google Scholar 

  • Ambros, M. et al. Zmeny v rozšírení ryšavky tmavopásej (Apodemus agrarius) na Slovensku. in Zborník príspevkov z vedeckého kongresu ‘Zoológia 2022’ 10 (2022).

  • Dudich, A. Ektoparazitofauna cicavcov a vtákov južnej časti Podunajskej nížiny so zreteľom na Žitný ostrov. 1. Siphonaptera. Žitnoostrovské múzeum Dunajská Streda—Spravodaj múzea 9, 61–96 (1986).

  • Dudich, A. Príspevok k poznaniu drobných zemných cicavcov (Insectivora, Rodentia) a ich ektoparazitov (Acarina, Anoplura, Siphonaptera) okolia ŠPR Čenkovská lesostep (Podunajská nížina). Iuxta Danubium (Komárno) 10, 186–191 (1993).

    Google Scholar 

  • Cyprich, D., Krumpál, M. & Dúha, J. Blchy (Siphonaptera) cicavcov (Mammalia) Štátnej prírodnej rezervácii Šúr. Ochrana prírody 8, 241–289 (1987).

    Google Scholar 

  • Lapin, M., Faško, P., Melo, M., Štastný, P. & Tomlain, J. Climate zones. in Landscape Atlas of the Slovak Republic (Harmanec: VKÚ, 2002).

  • Faško, P. & Štastný, P. Average annual precipitation. in Landscape Atlas of the Slovak Republic (2002).

  • Russell, J. C., Stjernman, M., Lindström, Å. & Smith, H. G. Community occupancy before-after-control-impact (CO-BACI) analysis of Hurricane Gudrun on Swedish forest birds. Ecol. Appl. 25, 685–694.  https://doi.org/10.1890/14-0645.1 (2015).

    Article 

    Google Scholar 

  • Desrosiers, M., Planas, D. & Mucci, A. Short-term responses to watershed logging on biomass mercury and methylmercury accumulation by periphyton in boreal lakes. Can. J. Fish. Aquat. Sci. 63, 1734–1745. https://doi.org/10.1139/f06-077 (2006).

    Article 
    CAS 

    Google Scholar 

  • Hanisch, J. R., Tonn, W. M., Paszkoswki, C. A. & Scrimgeour, G. J. Stocked trout have minimal effects on littoral invertebrate assemblages of productive fish-bearing lakes: A whole-lake BACI study: Stocked trout have minimal effects on littoral invertebrates. Freshw. Biol. 58, 895–907. https://doi.org/10.1111/fwb.12095 (2013).

    Article 

    Google Scholar 

  • Louhi, P., Mäki-Petäys, A., Erkinaro, J., Paasivaara, A. & Muotka, T. Impacts of forest drainage improvement on stream biota: A multisite BACI-experiment. For. Ecol. Manage. 260, 1315–1323. https://doi.org/10.1016/j.foreco.2010.07.024 (2010).

    Article 

    Google Scholar 

  • Conner, M. M., Saunders, W. C., Bouwes, N. & Jordan, C. Evaluating impacts using a BACI design, ratios, and a Bayesian approach with a focus on restoration. Environ Monit Assess 188, 555. https://doi.org/10.1007/s10661-016-5526-6
    (2016).

    Article 

    Google Scholar 

  • Popescu, V. D., de Valpine, P., Tempel, D. & Peery, M. Z. Estimating population impacts via dynamic occupancy analysis of Before-After Control–Impact studies. Ecol. Appl. 22, 1389–1404. https://doi.org/10.1890/11-1669.1 (2012).

    Article 

    Google Scholar 

  • Horváth, G. F. & Herczeg, R. Site occupancy response to natural and anthropogenic disturbances of root vole: Conservation problem of a vulnerable relict subspecies. J. Nat. Conserv. 21, 350–358. https://doi.org/10.1016/j.jnc.2013.03.004 (2013).

    Article 

    Google Scholar 

  • Pounder, K. C. et al. Novel Hantavirus in Wildlife, United Kingdom. Emerg. Infect. Dis. 19, 673–675. https://doi.org/10.3201/eid1904.121057 (2013).

    Article 

    Google Scholar 

  • Kreisinger, J., Bastien, G., Hauffe, H. C., Marchesi, J. & Perkins, S. E. Interactions between multiple helminths and the gut microbiota in wild rodents. Phil. Trans. R. Soc. B 370, 20140295. https://doi.org/10.1098/rstb.2014.0295 (2015).

    Article 

    Google Scholar 

  • Kim, H.-C. et al. Hantavirus surveillance and genetic diversity targeting small mammals at Camp Humphreys, a US military installation and new expansion site Republic of Korea. PLoS ONE 12, e0176514. https://doi.org/10.1371/journal.pone.0176514 (2017).

    Article 

    Google Scholar 

  • Burnham, K. P., Anderson, D. R. & Burnham, K. P. Model selection and multimodel inference: a practical information-theoretic approach. (Springer, 2002).

  • Sugiura, N. Further analysis of the data by Akaike’s information criterion and the finite corrections: Further analysis of the data by akaike’ s. Commun. Stat. Theory Methods 7, 13–26 (1978).

    Article 
    MATH 

    Google Scholar 

  • Hurvich, C. M. & Tsai, C.-L. Regression and time series model selection in small samples. Biometrika 76, 297–307 (1989).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Morris, E. K. et al. Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories. Ecol. Evol. 4, 3514–3524. https://doi.org/10.1002/ece3.1155 (2014).

    Article 

    Google Scholar 

  • Ingram, J. C. Berger–Parker Index. in Encyclopedia of Ecology 332–334 (Elsevier, 2008). https://doi.org/10.1016/B978-008045405-4.00091-4.

  • Bürkner, P.-C. brms : An R package for bayesian multilevel models using Stan. J. Stat. Soft. 80, (2017).

  • Wang, Y., Naumann, U., Eddelbuettel, D., Wilshire, J. & Warton, D. mvabund: Statistical Methods for Analysing Multivariate Abundance Data. (2022).

  • Warton, D. I., Thibaut, L. & Wang, Y. A. The PIT-trap—A “model-free” bootstrap procedure for inference about regression models with discrete, multivariate responses. PLoS ONE 12, e0181790. https://doi.org/10.1371/journal.pone.0181790 (2017).

    Article 

    Google Scholar 

  • Oksanen, J. et al. vegan: Community Ecology Package. (2022).

  • R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2022).

  • Percie du Sert, N. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 18, e3000411. https://doi.org/10.1371/journal.pbio.3000411 (2020).

  • Szacki, J. & Liro, A. Movements of small mammals in the heterogeneous landscape. Landsc. Ecol. 5, 219–224 (1991).

    Article 

    Google Scholar 

  • Szacki, J., Babinska-Werka, J. & Liro, A. The influence of landscape spatial structure on small mammal movements. Acta Theriol. 2, (1993).

  • Pimentel, D., Pimentel, M. & Wilson, A. Plant, animal, and microbe invasive species in the United States and World. Biol. Invasions 193 (2007).

  • Valéry, L., Hervé, F., Lefeuvre, J. C. & Simberloff, D. Invasive species can also be native. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2009.07.003 (2009).

    Article 

    Google Scholar 

  • Deinet, S. et al. Wildlife comeback in Europe: The recovery of selected mammal and bird species. (2013).

  • Gompper, M. Top Carnivores in the Suburbs? Ecological and Conservation Issues Raised by Colonization of North-eastern North America by Coyotes: The expansion of the coyote’s geographical range may broadly influence community structure, and rising coyote densities in the suburbs may alter how the general public views wildlife. BioScience 52, 185–190. https://doi.org/10.1641/0006-3568 (2002).

  • Dalecky, A. et al. Range expansion of the invasive house mouse Mus musculus domesticus in Senegal, West Africa: A synthesis of trapping data over three decades, 1983–2014. Mammal. Rev. 45, 176–190. https://doi.org/10.1111/mam.12043 (2015).

    Article 

    Google Scholar 

  • Konečnỳ, A. et al. Invasion genetics of the introduced black rat (Rattus rattus) in Senegal West Africa. Mol. Ecol. 22, 286–300. https://doi.org/10.1111/mec.12112 (2013).

    <a data-track="click" rel="nofollow noopener" data-track-label="10.1111/mec.12112″ data-track-action=”article reference” href=”https://doi.org/10.1111%2Fmec.12112%3C%2Fdiv%3E” aria-label=”Article reference 92″ data-doi=”10.1111/mec.12112″>Article 

    Google Scholar 

  • Bramley, G. N. Home ranges and interactions of kiore (Rattus exulans) and Norway rats (R. norvegicus) on Kapiti Island, New Zealand. New Zeal. J. Ecol. 328–334 (2014).

  • O’Rourke, R. L., Anson, J. R., Saul, A. M. & Banks, P. B. Limits to alien black rats (Rattus rattus) acting as equivalent pollinators to extinct native small mammals: The influence of stem width on mammal activity at native Banksia ericifolia inflorescences. Biol. Invasions 22, 329–338. https://doi.org/10.1007/s10530-019-02090-x (2020).

    Article 

    Google Scholar 

  • White, T. A. et al. Range expansion in an invasive small mammal: influence of life-history and habitat quality. Biol. Invasions 14, 2203–2215. https://doi.org/10.1007/s10530-012-0225-x (2012).

    Article 

    Google Scholar 

  • McDevitt, A. D. et al. Invading and expanding: Range dynamics and ecological consequences of the greater white-toothed shrew (Crocidura russula) invasion in Ireland. PLoS ONE 9, e100403. https://doi.org/10.1371/journal.pone.0100403 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Aguilar, J.-P., Pélissié, T., Sigé, B. & Michaux, J. Occurrence of the stripe field mouse lineage (Apodemus agrarius Pallas 1771; Rodentia; Mammalia) in the Late Pleistocene of southwestern France. C.R. Palevol 7, 217–225 (2008).

    Article 

    Google Scholar 

  • Kordos, L. Historico-zoogeographical and ecological investigation of the subfossil vertebrate fauna of the Aggtelek Karst. Vert. Hung. 18, 85–100 (1978).

    Google Scholar 

  • Hairston, N. G., Smith, F. E. & Slobodkin, L. B. Community structure, population control, and competition. Am. Nat. 94, 421–425 (1960).

    Article 

    Google Scholar 

  • Agnew, P., Hide, M., Sidobre, C. & Michalakis, Y. A minimalist approach to the effects of density-dependent competition on insect life-history traits. Ecol. Entomol. 27, 396–402 (2002).

    Article 

    Google Scholar 

  • Krebs, C. J. Beyond population regulation and limitation. Wildl. Res. 29, 1–10 (2002).

    Article 

    Google Scholar 

  • Huitu, O., Norrdahl, K. & Korpimäki, E. Competition, predation and interspecific synchrony in cyclic small mammal communities. Ecography 27, 197–206.  https://doi.org/10.1111/j.0906-7590.2003.03684.x (2004).

    Article 

    Google Scholar 

  • Lofgren, O. Niche expansion and increased maturation rate of Clethrionomys glareolus in the absence of competitors. J. Mammal. 76, 1100–1112 (1995).

    Article 

    Google Scholar 

  • Hansson, L. Competition between Rodents in Successional Stages of Taiga Forests: Microtus agrestis vs. Clethrionomys glareolus. Oikos 40, 258 (1983).

    Article 

    Google Scholar 

  • Eccard, J. A. & Ylönen, H. Direct interference or indirect exploitation? An experimental study of fitness costs of interspecific competition in voles. Oikos 99, 580–590. https://doi.org/10.1034/j.1600-0706.2002.11833.x (2002).

    Article 

    Google Scholar 

  • Gliwicz, J. Competition among forest rodents: Effects of Apodemus flavicollis and Clethrionomys glareolus on A. agrarius. Acta Zool. Fennica 1984. (1984).

  • Neet, C. R. & Hausser, J. Habitat selection in zones of parapatric contact between the common shrew Sorex araneus and Millet’s shrew S. coronatus. J. Anim. Ecol. 235–250 (1990).

  • Zub, K., Jędrzejewska, B., Jędrzejewski, W. & Bartoń, K. A. Cyclic voles and shrews and non-cyclic mice in a marginal grassland within European temperate forest. Acta Theriol. 57, 205–216 (2012).

    Article 
    CAS 

    Google Scholar 

  • Henttonen, H. et al. Long-term population dynamics of the common shrew Sorex araneus in Finland. in Annales Zoologici Fennici 349–355 (JSTOR, 1989).

  • Gębczyńska, Z., Gębczyński, M., Morzuch, K. & Zielińska, D. M. Food eaten by four species of rodents in polluted forests. Acta Theriol. 34, 465–477 (1989).

    Article 

    Google Scholar 

  • Babinska-Werka, J. Response of rodents to an increased and quantitatively diverse food base. Acta theriologica 35, (1990).

  • Margaletic, J., Glavaš, M. & Bäumler, W. The development of mice and voles in an oak forest with a surplus of acorns. J. Pest Sci. 75, 95–98 (2002).

  • Holisova, V. The food of Apodemus agrarius (Pall.). Zoologické listy 16, 1–14 (1967).

  • Obrtel, R. & Hološová, V. The trophic niche of Apodemus agrarius in northern Moravia. Folia Zool. 30, 125–138 (1981).

    Google Scholar 

  • Grant, P. R. Interspecific competition among rodents. Annu. Rev. Ecol. Syst. 3, 79–106 (1972).

    Article 

    Google Scholar 

  • Redfield, J. A., Krebs, C. J. & Taitt, M. J. Competition between Peromyscus maniculatus and Microtus townsendii in grasslands of coastal British Columbia. J. Anim. Ecol. 607–616 (1977).

  • Kincaid, W. B. & Cameron, G. N. Effects of species removal on resource utilization in a Texas rodent community. J. Mammal. 63, 229–235 (1982).

    Article 

    Google Scholar 

  • Yurkonis, K. A., Meiners, S. J. & Wachholder, B. E. Invasion impacts diversity through altered community dynamics. J. Ecol. 93, 1053–1061 (2005).

    Article 

    Google Scholar 

  • Powell, K. I., Chase, J. M. & Knight, T. M. A synthesis of plant invasion effects on biodiversity across spatial scales. Am. J. Bot. 98, 539–548. https://doi.org/10.3732/ajb.1000402 (2011).

    Article 

    Google Scholar 

  • Jaksic, F. M. Vertebrate invaders and their ecological impacts in Chile. Biodivers. Conserv. 7, 1427–1445 (1998).

    Article 

    Google Scholar 

  • Richter-Boix, A. et al. Effects of the non-native amphibian species Discoglossus pictus on the recipient amphibian community: Niche overlap, competition and community organization. Biol. Invasions 15, 799–815. https://doi.org/10.1007/s10530-012-0328-4 (2013).

    Article 

    Google Scholar 

  • Kumschick, S., Bacher, S. & Blackburn, T. M. What determines the impact of alien birds and mammals in Europe? Biol. Invasions 15, 785–797. https://doi.org/10.1007/s10530-012-0326-6 (2013).

    Article 

    Google Scholar 

  • Tedeschi, L., Biancolini, D., Capinha, C., Rondinini, C. & Essl, F. Introduction, spread, and impacts of invasive alien mammal species in Europe. Mam. Rev. Mam. 12277. https://doi.org/10.1111/mam.12277 (2021).

  • Harris, D. B. Review of negative effects of introduced rodents on small mammals on islands. Biol. Invasions 11, 1611–1630. https://doi.org/10.1007/s10530-008-9393-0 (2009).

    Article 

    Google Scholar 

  • Traveset, A. et al. A review on the effects of alien rodents in the Balearic (Western Mediterranean Sea) and Canary Islands (Eastern Atlantic Ocean). Biol. Invasions 11, 1653–1670. https://doi.org/10.1007/s10530-008-9395-y (2009).

    Article 

    Google Scholar 

  • Jung, T. S., Nagorsen, D. W., Kukka, P. M. & Barker, O. E. Alien invaders: recent establishment of an urban population of house mice (Mus musculus) in the Yukon. Northwest. Nat. 93, 240–242 (2012).

    Article 

    Google Scholar 

  • McKinney, M. L. & Lockwood, J. L. Biotic homogenization: A few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453. https://doi.org/10.1016/S0169-5347(99)01679-1 (1999).

    Article 
    CAS 

    Google Scholar 

  • MacGregor-Fors, I., Morales-Pérez, L., Quesada, J. & Schondube, J. E. Relationship between the presence of House Sparrows (Passer domesticus) and Neotropical bird community structure and diversity. Biol. Invasions 12, 87–96. https://doi.org/10.1007/s10530-009-9432-5 (2010).

    Article 

    Google Scholar 

  • Phillips, B. L. Behaviour on Invasion Fronts, and the Behaviour of Invasion Fronts. in Biological Invasions and Animal Behaviour (eds. Weis, J. S. & Sol, D.) 82–95 (Cambridge University Press, 2016). https://doi.org/10.1017/CBO9781139939492.007.

  • Pietrek, A. G., Goheen, J. R., Riginos, C., Maiyo, N. J. & Palmer, T. M. Density dependence and the spread of invasive big-headed ants (Pheidole megacephala) in an East African savanna. Oecologia 195, 667–676. https://doi.org/10.1007/s00442-021-04859-1 (2021).

    Article 
    ADS 

    Google Scholar 

  • Stanko, M. Ryšavka tmavopása (Apodemus agrarius, Rodentia) na Slovensku. (Parazitologický ústav SAV, 2014).

  • Thompson, K., Hodgson, J. G. & Rich, T. C. Native and alien invasive plants: more of the same?. Ecography 18, 390–402 (1995).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Computers that power self-driving cars could be a huge driver of global carbon emissions

    Tracking microbes in extreme environments