Raubenheimer, D., Simpson, S. J. & Mayntz, D. Nutrition, ecology and nutritional ecology: Toward an integrated framework. Funct. Ecol. 23, 4–16 (2009).
Google Scholar
Behmer, S. T. & Joern, A. Coexisting generalist herbivores occupy unique nutritional feeding niches. Proc. Natl. Acad. Sci. U. S. A. 105, 1977–1982. https://doi.org/10.1073/pnas.0711870105 (2008).
Google Scholar
Lihoreau, M. et al. Nutritional ecology beyond the individual: A conceptual framework for integrating nutrition and social interactions. Ecol. Lett. 18, 273–286 (2015).
Google Scholar
Raubenheimer, D., Simpson, S. J. & Tait, A. H. Match and mismatch: conservation physiology, nutritional ecology and the timescales of biological adaptation. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 367, 1628–1646. https://doi.org/10.1098/rstb.2012.0007 (2012).
Google Scholar
von Liebig, J. Die organische Chemie in ihrer Anwendung auf Agricultur und Physiologie. (Vieweg, 1841).
Simpson, C., Simpson, S. & Abisgold, J. In Symposium Biologica Hungarica. 39–46.
Boersma, M. & Elser, J. Too much of a good thing: On stoichiometrically balanced diets and maximal growth. Ecology 87, 1325–1330 (2006).
Google Scholar
Simpson, S. J. & Raubenheimer, D. A multi-level analysis of feeding behaviour: The geometry of nutritional decisions. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 342, 381–402. https://doi.org/10.1098/rstb.1993.0166 (1993).
Google Scholar
Zanotto, F. P., Raubenheimer, D. & Simpson, S. J. Haemolymph amino acid and sugar levels in locust fed nutritionally unbalanced diets. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 166, 223–229 (1996).
Google Scholar
Kohl, K. D., Coogan, S. C. & Raubenheimer, D. Do wild carnivores forage for prey or for nutrients? Evidence for nutrient-specific foraging in vertebrate predators. BioEssays 37, 701–709. https://doi.org/10.1002/bies.201400171 (2015).
Google Scholar
Remonti, L., Balestrieri, A., Raubenheimer, D. & Saino, N. Functional implications of omnivory for dietary nutrient balance. Oikos 125, 1233–1240 (2016).
Google Scholar
McIntyre, P. B. & Flecker, A. S. In Community Ecology of Stream Fishes: Concepts, Approaches, and Techniques. American Fisheries Society, Symposium. 539–558 (Citeseer).
DeGabriel, J. L. et al. Translating nutritional ecology from the laboratory to the field: Milestones in linking plant chemistry to population regulation in mammalian browsers. Oikos 123, 298–308 (2014).
Google Scholar
Nielsen, S. E., Larsen, T. A., Stenhouse, G. B. & Coogan, S. C. P. Complementary food resources of carnivory and frugivory affect local abundance of an omnivorous carnivore. Oikos 126, 369–380. https://doi.org/10.1111/oik.03144 (2017).
Google Scholar
Mayntz, D., Raubenheimer, D., Salomon, M., Toft, S. & Simpson, S. J. Nutrient-specific foraging in invertebrate predators. Science 307, 111–113 (2005).
Google Scholar
Anderson, T. R., Boersma, M. & Raubenheimer, D. Stoichiometry: Linking elements to biochemicals. Ecology 85, 1193–1202 (2004).
Google Scholar
McManamay, R. A., Webster, J. R., Valett, H. M. & Dolloff, C. A. Does diet influence consumer nutrient cycling? Macroinvertebrate and fish excretion in streams. J. N. Am. Benthol. Soc. 30, 84–102. https://doi.org/10.1899/09-152.1 (2011).
Google Scholar
Vivas, M., Sánchez-Vázquez, F., García García, B. & Madrid, J. Macronutrient self-selection in European sea bass in response to dietary protein or fat restriction. Aquac. Res. 34, 271–280 (2003).
Google Scholar
Rubio, V., Navarro, D. B., Madrid, J. & Sánchez-Vázquez, F. Macronutrient self-selection in Solea senegalensis fed macronutrient diets and challenged with dietary protein dilutions. Aquaculture 291, 95–100 (2009).
Google Scholar
Mayntz, D. et al. Balancing of protein and lipid intake by a mammalian carnivore, the mink, Mustela vison. Anim. Behav. 77, 349–355 (2009).
Google Scholar
Al Shareefi, E. & Cotter, S. C. The nutritional ecology of maturation in a carnivorous insect. Behav. Ecol. 30, 256–266 (2019).
Google Scholar
Jensen, K. et al. Nutrient-specific compensatory feeding in a mammalian carnivore, the mink, Neovison vison. Br. J. Nutr. 112, 1226–1233. https://doi.org/10.1017/S0007114514001664 (2014).
Google Scholar
Hayward, M., Jędrzejewski, W. & Jedrzejewska, B. Prey preferences of the tiger Panthera tigris. J. Zool. 286, 221–231 (2012).
Google Scholar
Whitney, T. D., Sitvarin, M. I., Roualdes, E. A., Bonner, S. J. & Harwood, J. D. Selectivity underlies the dissociation between seasonal prey availability and prey consumption in a generalist predator. Mol. Ecol. 27, 1739–1748 (2018).
Google Scholar
Potter, T. I., Stannard, H. J., Greenville, A. C. & Dickman, C. R. Understanding selective predation: Are energy and nutrients important?. PLoS One 13, e0201300 (2018).
Google Scholar
Machovsky-Capuska, G. E. et al. Sex-specific macronutrient foraging strategies in a highly successful marine predator: The Australasian gannet. Mar. Biol. 163, 75 (2016).
Google Scholar
Remonti, L., Balestrieri, A. & Prigioni, C. Percentage of protein, lipids, and carbohydrates in the diet of badger (Meles meles) populations across Europe. Ecol. Res. 26, 487–495 (2011).
Google Scholar
Wilder, S. M. et al. Three-dimensional diet regulation and the consequences of choice for weight and activity level of a marsupial carnivore. J. Mammal. 97, 1645–1651 (2016).
Google Scholar
Yu, D.-H. et al. Effect of partial replacement of fish meal with soybean meal and feeding frequency on growth, feed utilization and body composition of juvenile Chinese sucker, Myxocyprinus asiaticus (Bleeker). Aquac. Res. 44, 388–394. https://doi.org/10.1111/j.1365-2109.2011.03043.x (2013).
Google Scholar
Kaushik, S. J. & Seiliez, I. Protein and amino acid nutrition and metabolism in fish: current knowledge and future needs. Aquac. Res. 41, 322–332. https://doi.org/10.1111/j.1365-2109.2009.02174.x (2010).
Google Scholar
Gaye-Siessegger, J., McCullagh, J. S. & Focken, U. The effect of dietary amino acid abundance and isotopic composition on the growth rate, metabolism and tissue delta13C of rainbow trout. Br. J. Nutr. 105, 1764–1771. https://doi.org/10.1017/S0007114510005696 (2011).
Google Scholar
McCullagh, J., Gaye-Siessegger, J. & Focken, U. Determination of underivatized amino acid delta(13)C by liquid chromatography/isotope ratio mass spectrometry for nutritional studies: The effect of dietary non-essential amino acid profile on the isotopic signature of individual amino acids in fish. Rapid Commun. Mass Spectrom. RCM 22, 1817–1822. https://doi.org/10.1002/rcm.3554 (2008).
Google Scholar
Gao, K. et al. Dietary L-arginine supplementation enhances placental growth and reproductive performance in sows. Amino Acids 42, 2207–2214 (2012).
Google Scholar
Wu, G. et al. Amino acid nutrition in animals: Protein synthesis and beyond. Annu. Rev. Anim. Biosci. 2, 387–417. https://doi.org/10.1146/annurev-animal-022513-114113 (2014).
Google Scholar
Dwyer, G. K., Stoffels, R. J., Silvester, E. & Rees, G. N. Prey amino acid composition affects rates of protein synthesis and N wastage of a freshwater carnivore. Mar. Freshw. Res. 71, 229–237. https://doi.org/10.1071/MF18410 (2020).
Google Scholar
Kremen, N. et al. Body composition and amino acid concentrations of select birds and mammals consumed by cats in northern and central California. J. Anim. Sci. 91, 1270–1276 (2013).
Google Scholar
Goodman-Lowe, G., Carpenter, J., Atkinson, S. & Ako, H. Nutrient, fatty acid, amino acid and mineral analysis of natural prey of the Hawaiian monk seal, Monachus schauinslandi. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 123, 137–146 (1999).
Google Scholar
Dwyer, G. K., Stoffels, R. J., Rees, G. N., Shackleton, M. & Silvester, E. A predicted change in the amino acid landscapes available to freshwater carnivores. Freshw. Sci. 37, 000–000 (2018).
Google Scholar
Kolmakova, A. A. et al. Amino acid composition of epilithic biofilm and benthic animals in a large Siberian river. Freshw. Biol. 58, 2180–2195. https://doi.org/10.1111/fwb.12200 (2013).
Google Scholar
Thera, J. C., Kidd, K. A. & Bertolo, R. F. Amino acids in freshwater food webs: Assessing their variability among taxa, trophic levels, and systems. Freshw. Biol. 65, 1101–1113 (2020).
Google Scholar
Fargallo, J. A., Navarro-López, J., Palma-Granados, P. & Nieto, R. M. Foraging strategy of a carnivorous-insectivorous raptor species based on prey size, capturability and nutritional components. Sci. Rep. 10, 1–12 (2020).
Google Scholar
Shakya, M., Silvester, E., Holland, A. & Rees, G. Taxonomic, seasonal and spatial variation in the amino acid profile of freshwater macroinvertebrates. Aquat. Sci. 83, 1–15 (2021).
Google Scholar
Martinez, J. B., Chatzifotis, S., Divanach, P. & Takeuchi, T. Effect of dietary taurine supplementation on growth performance and feed selection of sea bass Dicentrarchus labrax fry fed with demand-feeders. Fish. Sci. 70, 74–79 (2004).
Google Scholar
Yamamoto, T. et al. Self-selection and feed consumption of diets with a complete amino acid composition and a composition deficient in either methionine or lysine by rainbow trout, Oncorhynchus mykiss (Walbaum). Aquac. Res. 32, 83–91 (2001).
Google Scholar
Dabrowski, K., Arslan, M., Terjesen, B. F. & Zhang, Y. The effect of dietary indispensable amino acid imbalances on feed intake: Is there a sensing of deficiency and neural signaling present in fish?. Aquaculture 268, 136–142. https://doi.org/10.1016/j.aquaculture.2007.04.065 (2007).
Google Scholar
Caprio, J. Olfaction and taste in the channel catfish: An electrophysiological study of the responses to amino acids and derivatives. J. Comp. Physiol. 123, 357–371 (1978).
Google Scholar
Hazlett, B. A. Crayfish feeding responses to zebra mussels depend on microorganisms and learning. J. Chem. Ecol. 20, 2623–2630. https://doi.org/10.1007/bf02036196 (1994).
Google Scholar
Gietzen, D. W. & Aja, S. M. The brain’s response to an essential amino acid-deficient diet and the circuitous route to a better meal. Mol. Neurobiol. 46, 332–348. https://doi.org/10.1007/s12035-012-8283-8 (2012).
Google Scholar
Rees, G. N., Shackleton, M. E., Watson, G. O., Dwyer, G. K. & Stoffels, R. J. Metabarcoding demonstrates dietary niche partitioning in two coexisting blackfish species. Mar. Freshw. Res. 71, 512–517 (2020).
Google Scholar
Antoine, F., Wei, C., Littell, R. & Marshall, M. HPLC method for analysis of free amino acids in fish using o-phthaldialdehyde precolumn derivatization. J. Agric. Food Chem. 47, 5100–5107 (1999).
Google Scholar
Anderson, M. J. & Santana-Garcon, J. Measures of precision for dissimilarity-based multivariate analysis of ecological communities. Ecol. Lett. 18, 66–73 (2015).
Google Scholar
Fountoulakis, M. & Lahm, H.-W. Hydrolysis and amino acid composition analysis of proteins. J. Chromatogr. A 826, 109–134 (1998).
Google Scholar
McArdle, B. H. When are rare species not there?. Oikos 57, 276–277 (1990).
Google Scholar
Machovsky-Capuska, G. E., Coogan, S. C., Simpson, S. J. & Raubenheimer, D. Motive for killing: What drives prey choice in wild predators?. Ethology 122, 703–711 (2016).
Google Scholar
Tait, A. H., Raubenheimer, D., Stockin, K. A., Merriman, M. & Machovsky-Capuska, G. E. Nutritional geometry and macronutrient variation in the diets of gannets: The challenges in marine field studies. Mar. Biol. 161, 2791–2801 (2014).
Google Scholar
Bosch, G., Hagen-Plantinga, E. A. & Hendriks, W. H. Dietary nutrient profiles of wild wolves: Insights for optimal dog nutrition?. Br. J. Nutr. 113, S40–S54 (2015).
Google Scholar
Machovsky-Capuska, G. E., Senior, A. M., Simpson, S. J. & Raubenheimer, D. The multidimensional nutritional niche. Trends Ecol. Evol. 31, 355–365 (2016).
Google Scholar
Jensen, K. et al. Optimal foraging for specific nutrients in predatory beetles. Proc. R. Soc. B 279, 2212–2218. https://doi.org/10.1098/rspb.2011.2410 (2012).
Google Scholar
Machovsky-Capuska, G. E. & Raubenheimer, D. The nutritional ecology of marine apex predators. Ann. Rev. Mar. Sci. 12, 361–387 (2020).
Google Scholar
Schindler, D. E. & Eby, L. A. Stoichiometry of fishes and their prey: Implications for nutrient recycling. Ecology 78, 1816–1831 (1997).
Google Scholar
Morosinotto, C., Villers, A., Varjonen, R. & Korpimäki, E. Food supplementation and predation risk in harsh climate: Interactive effects on abundance and body condition of tit species. Oikos 126, 863–873. https://doi.org/10.1111/oik.03476 (2017).
Google Scholar
Österblom, H., Olsson, O., Blenckner, T. & Furness, R. W. Junk-food in marine ecosystems. Oikos 117, 967–977 (2008).
Google Scholar
Dwyer, G. K., Stoffels, R. J. & Pridmore, P. A. Morphology, metabolism and behaviour: responses of three fishes with different lifestyles to acute hypoxia. Freshw. Biol. 59, 819–831. https://doi.org/10.1111/fwb.12306 (2014).
Google Scholar
Hubel, T. Y. et al. Energy cost and return for hunting in African wild dogs and cheetahs. Nat. Commun. 7, 11034 (2016).
Google Scholar
Ip, Y. K., Lim, C. K., Lee, S. L., Wong, W. P. & Chew, S. F. Postprandial increases in nitrogenous excretion and urea synthesis in the giant mudskipper Periophthalmodon schlosseri. J. Exp. Biol. 207, 3015–3023 (2004).
Google Scholar
Wilkie, M. P. Mechanisms of ammonia excretion across fish gills. Comp. Biochem. Physiol. A Physiol. 118, 39–50 (1997).
Google Scholar
Yamamoto, T. et al. Self-selection of diets with different amino acid profiles by rainbow trout (Oncorhynchus mykiss). Aquaculture 187, 375–386 (2000).
Google Scholar
Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. J. P. B. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. J. Pharmacol. Pharmacother. 8, e1000412 (2010).
Source: Ecology - nature.com