in

Two wild carnivores selectively forage for prey but not amino acids

  • Raubenheimer, D., Simpson, S. J. & Mayntz, D. Nutrition, ecology and nutritional ecology: Toward an integrated framework. Funct. Ecol. 23, 4–16 (2009).

    Article 

    Google Scholar 

  • Behmer, S. T. & Joern, A. Coexisting generalist herbivores occupy unique nutritional feeding niches. Proc. Natl. Acad. Sci. U. S. A. 105, 1977–1982. https://doi.org/10.1073/pnas.0711870105 (2008).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lihoreau, M. et al. Nutritional ecology beyond the individual: A conceptual framework for integrating nutrition and social interactions. Ecol. Lett. 18, 273–286 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Raubenheimer, D., Simpson, S. J. & Tait, A. H. Match and mismatch: conservation physiology, nutritional ecology and the timescales of biological adaptation. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 367, 1628–1646. https://doi.org/10.1098/rstb.2012.0007 (2012).

    Article 
    CAS 

    Google Scholar 

  • von Liebig, J. Die organische Chemie in ihrer Anwendung auf Agricultur und Physiologie. (Vieweg, 1841).

  • Simpson, C., Simpson, S. & Abisgold, J. In Symposium Biologica Hungarica. 39–46.

  • Boersma, M. & Elser, J. Too much of a good thing: On stoichiometrically balanced diets and maximal growth. Ecology 87, 1325–1330 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Simpson, S. J. & Raubenheimer, D. A multi-level analysis of feeding behaviour: The geometry of nutritional decisions. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 342, 381–402. https://doi.org/10.1098/rstb.1993.0166 (1993).

    Article 
    ADS 

    Google Scholar 

  • Zanotto, F. P., Raubenheimer, D. & Simpson, S. J. Haemolymph amino acid and sugar levels in locust fed nutritionally unbalanced diets. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 166, 223–229 (1996).

    Article 
    CAS 

    Google Scholar 

  • Kohl, K. D., Coogan, S. C. & Raubenheimer, D. Do wild carnivores forage for prey or for nutrients? Evidence for nutrient-specific foraging in vertebrate predators. BioEssays 37, 701–709. https://doi.org/10.1002/bies.201400171 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Remonti, L., Balestrieri, A., Raubenheimer, D. & Saino, N. Functional implications of omnivory for dietary nutrient balance. Oikos 125, 1233–1240 (2016).

    Article 
    CAS 

    Google Scholar 

  • McIntyre, P. B. & Flecker, A. S. In Community Ecology of Stream Fishes: Concepts, Approaches, and Techniques. American Fisheries Society, Symposium. 539–558 (Citeseer).

  • DeGabriel, J. L. et al. Translating nutritional ecology from the laboratory to the field: Milestones in linking plant chemistry to population regulation in mammalian browsers. Oikos 123, 298–308 (2014).

    Article 

    Google Scholar 

  • Nielsen, S. E., Larsen, T. A., Stenhouse, G. B. & Coogan, S. C. P. Complementary food resources of carnivory and frugivory affect local abundance of an omnivorous carnivore. Oikos 126, 369–380. https://doi.org/10.1111/oik.03144 (2017).

    Article 
    CAS 

    Google Scholar 

  • Mayntz, D., Raubenheimer, D., Salomon, M., Toft, S. & Simpson, S. J. Nutrient-specific foraging in invertebrate predators. Science 307, 111–113 (2005).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Anderson, T. R., Boersma, M. & Raubenheimer, D. Stoichiometry: Linking elements to biochemicals. Ecology 85, 1193–1202 (2004).

    Article 

    Google Scholar 

  • McManamay, R. A., Webster, J. R., Valett, H. M. & Dolloff, C. A. Does diet influence consumer nutrient cycling? Macroinvertebrate and fish excretion in streams. J. N. Am. Benthol. Soc. 30, 84–102. https://doi.org/10.1899/09-152.1 (2011).

    Article 

    Google Scholar 

  • Vivas, M., Sánchez-Vázquez, F., García García, B. & Madrid, J. Macronutrient self-selection in European sea bass in response to dietary protein or fat restriction. Aquac. Res. 34, 271–280 (2003).

    Article 

    Google Scholar 

  • Rubio, V., Navarro, D. B., Madrid, J. & Sánchez-Vázquez, F. Macronutrient self-selection in Solea senegalensis fed macronutrient diets and challenged with dietary protein dilutions. Aquaculture 291, 95–100 (2009).

    Article 
    CAS 

    Google Scholar 

  • Mayntz, D. et al. Balancing of protein and lipid intake by a mammalian carnivore, the mink, Mustela vison. Anim. Behav. 77, 349–355 (2009).

    Article 

    Google Scholar 

  • Al Shareefi, E. & Cotter, S. C. The nutritional ecology of maturation in a carnivorous insect. Behav. Ecol. 30, 256–266 (2019).

    Article 

    Google Scholar 

  • Jensen, K. et al. Nutrient-specific compensatory feeding in a mammalian carnivore, the mink, Neovison vison. Br. J. Nutr. 112, 1226–1233. https://doi.org/10.1017/S0007114514001664 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hayward, M., Jędrzejewski, W. & Jedrzejewska, B. Prey preferences of the tiger Panthera tigris. J. Zool. 286, 221–231 (2012).

    Article 

    Google Scholar 

  • Whitney, T. D., Sitvarin, M. I., Roualdes, E. A., Bonner, S. J. & Harwood, J. D. Selectivity underlies the dissociation between seasonal prey availability and prey consumption in a generalist predator. Mol. Ecol. 27, 1739–1748 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Potter, T. I., Stannard, H. J., Greenville, A. C. & Dickman, C. R. Understanding selective predation: Are energy and nutrients important?. PLoS One 13, e0201300 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Machovsky-Capuska, G. E. et al. Sex-specific macronutrient foraging strategies in a highly successful marine predator: The Australasian gannet. Mar. Biol. 163, 75 (2016).

    Article 

    Google Scholar 

  • Remonti, L., Balestrieri, A. & Prigioni, C. Percentage of protein, lipids, and carbohydrates in the diet of badger (Meles meles) populations across Europe. Ecol. Res. 26, 487–495 (2011).

    Article 
    CAS 

    Google Scholar 

  • Wilder, S. M. et al. Three-dimensional diet regulation and the consequences of choice for weight and activity level of a marsupial carnivore. J. Mammal. 97, 1645–1651 (2016).

    Article 

    Google Scholar 

  • Yu, D.-H. et al. Effect of partial replacement of fish meal with soybean meal and feeding frequency on growth, feed utilization and body composition of juvenile Chinese sucker, Myxocyprinus asiaticus (Bleeker). Aquac. Res. 44, 388–394. https://doi.org/10.1111/j.1365-2109.2011.03043.x (2013).

    Article 
    CAS 

    Google Scholar 

  • Kaushik, S. J. & Seiliez, I. Protein and amino acid nutrition and metabolism in fish: current knowledge and future needs. Aquac. Res. 41, 322–332. https://doi.org/10.1111/j.1365-2109.2009.02174.x (2010).

    Article 
    CAS 

    Google Scholar 

  • Gaye-Siessegger, J., McCullagh, J. S. & Focken, U. The effect of dietary amino acid abundance and isotopic composition on the growth rate, metabolism and tissue delta13C of rainbow trout. Br. J. Nutr. 105, 1764–1771. https://doi.org/10.1017/S0007114510005696 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McCullagh, J., Gaye-Siessegger, J. & Focken, U. Determination of underivatized amino acid delta(13)C by liquid chromatography/isotope ratio mass spectrometry for nutritional studies: The effect of dietary non-essential amino acid profile on the isotopic signature of individual amino acids in fish. Rapid Commun. Mass Spectrom. RCM 22, 1817–1822. https://doi.org/10.1002/rcm.3554 (2008).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Gao, K. et al. Dietary L-arginine supplementation enhances placental growth and reproductive performance in sows. Amino Acids 42, 2207–2214 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, G. et al. Amino acid nutrition in animals: Protein synthesis and beyond. Annu. Rev. Anim. Biosci. 2, 387–417. https://doi.org/10.1146/annurev-animal-022513-114113 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dwyer, G. K., Stoffels, R. J., Silvester, E. & Rees, G. N. Prey amino acid composition affects rates of protein synthesis and N wastage of a freshwater carnivore. Mar. Freshw. Res. 71, 229–237. https://doi.org/10.1071/MF18410 (2020).

    Article 
    CAS 

    Google Scholar 

  • Kremen, N. et al. Body composition and amino acid concentrations of select birds and mammals consumed by cats in northern and central California. J. Anim. Sci. 91, 1270–1276 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Goodman-Lowe, G., Carpenter, J., Atkinson, S. & Ako, H. Nutrient, fatty acid, amino acid and mineral analysis of natural prey of the Hawaiian monk seal, Monachus schauinslandi. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 123, 137–146 (1999).

    Article 
    CAS 

    Google Scholar 

  • Dwyer, G. K., Stoffels, R. J., Rees, G. N., Shackleton, M. & Silvester, E. A predicted change in the amino acid landscapes available to freshwater carnivores. Freshw. Sci. 37, 000–000 (2018).

    Article 

    Google Scholar 

  • Kolmakova, A. A. et al. Amino acid composition of epilithic biofilm and benthic animals in a large Siberian river. Freshw. Biol. 58, 2180–2195. https://doi.org/10.1111/fwb.12200 (2013).

    Article 
    CAS 

    Google Scholar 

  • Thera, J. C., Kidd, K. A. & Bertolo, R. F. Amino acids in freshwater food webs: Assessing their variability among taxa, trophic levels, and systems. Freshw. Biol. 65, 1101–1113 (2020).

    Article 
    CAS 

    Google Scholar 

  • Fargallo, J. A., Navarro-López, J., Palma-Granados, P. & Nieto, R. M. Foraging strategy of a carnivorous-insectivorous raptor species based on prey size, capturability and nutritional components. Sci. Rep. 10, 1–12 (2020).

    Article 

    Google Scholar 

  • Shakya, M., Silvester, E., Holland, A. & Rees, G. Taxonomic, seasonal and spatial variation in the amino acid profile of freshwater macroinvertebrates. Aquat. Sci. 83, 1–15 (2021).

    Article 

    Google Scholar 

  • Martinez, J. B., Chatzifotis, S., Divanach, P. & Takeuchi, T. Effect of dietary taurine supplementation on growth performance and feed selection of sea bass Dicentrarchus labrax fry fed with demand-feeders. Fish. Sci. 70, 74–79 (2004).

    Article 

    Google Scholar 

  • Yamamoto, T. et al. Self-selection and feed consumption of diets with a complete amino acid composition and a composition deficient in either methionine or lysine by rainbow trout, Oncorhynchus mykiss (Walbaum). Aquac. Res. 32, 83–91 (2001).

    Article 
    CAS 

    Google Scholar 

  • Dabrowski, K., Arslan, M., Terjesen, B. F. & Zhang, Y. The effect of dietary indispensable amino acid imbalances on feed intake: Is there a sensing of deficiency and neural signaling present in fish?. Aquaculture 268, 136–142. https://doi.org/10.1016/j.aquaculture.2007.04.065 (2007).

    Article 
    CAS 

    Google Scholar 

  • Caprio, J. Olfaction and taste in the channel catfish: An electrophysiological study of the responses to amino acids and derivatives. J. Comp. Physiol. 123, 357–371 (1978).

    Article 

    Google Scholar 

  • Hazlett, B. A. Crayfish feeding responses to zebra mussels depend on microorganisms and learning. J. Chem. Ecol. 20, 2623–2630. https://doi.org/10.1007/bf02036196 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gietzen, D. W. & Aja, S. M. The brain’s response to an essential amino acid-deficient diet and the circuitous route to a better meal. Mol. Neurobiol. 46, 332–348. https://doi.org/10.1007/s12035-012-8283-8 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rees, G. N., Shackleton, M. E., Watson, G. O., Dwyer, G. K. & Stoffels, R. J. Metabarcoding demonstrates dietary niche partitioning in two coexisting blackfish species. Mar. Freshw. Res. 71, 512–517 (2020).

    Article 
    CAS 

    Google Scholar 

  • Antoine, F., Wei, C., Littell, R. & Marshall, M. HPLC method for analysis of free amino acids in fish using o-phthaldialdehyde precolumn derivatization. J. Agric. Food Chem. 47, 5100–5107 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Anderson, M. J. & Santana-Garcon, J. Measures of precision for dissimilarity-based multivariate analysis of ecological communities. Ecol. Lett. 18, 66–73 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Fountoulakis, M. & Lahm, H.-W. Hydrolysis and amino acid composition analysis of proteins. J. Chromatogr. A 826, 109–134 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McArdle, B. H. When are rare species not there?. Oikos 57, 276–277 (1990).

    Article 

    Google Scholar 

  • Machovsky-Capuska, G. E., Coogan, S. C., Simpson, S. J. & Raubenheimer, D. Motive for killing: What drives prey choice in wild predators?. Ethology 122, 703–711 (2016).

    Article 

    Google Scholar 

  • Tait, A. H., Raubenheimer, D., Stockin, K. A., Merriman, M. & Machovsky-Capuska, G. E. Nutritional geometry and macronutrient variation in the diets of gannets: The challenges in marine field studies. Mar. Biol. 161, 2791–2801 (2014).

    Article 
    CAS 

    Google Scholar 

  • Bosch, G., Hagen-Plantinga, E. A. & Hendriks, W. H. Dietary nutrient profiles of wild wolves: Insights for optimal dog nutrition?. Br. J. Nutr. 113, S40–S54 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Machovsky-Capuska, G. E., Senior, A. M., Simpson, S. J. & Raubenheimer, D. The multidimensional nutritional niche. Trends Ecol. Evol. 31, 355–365 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Jensen, K. et al. Optimal foraging for specific nutrients in predatory beetles. Proc. R. Soc. B 279, 2212–2218. https://doi.org/10.1098/rspb.2011.2410 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Machovsky-Capuska, G. E. & Raubenheimer, D. The nutritional ecology of marine apex predators. Ann. Rev. Mar. Sci. 12, 361–387 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Schindler, D. E. & Eby, L. A. Stoichiometry of fishes and their prey: Implications for nutrient recycling. Ecology 78, 1816–1831 (1997).

    Article 

    Google Scholar 

  • Morosinotto, C., Villers, A., Varjonen, R. & Korpimäki, E. Food supplementation and predation risk in harsh climate: Interactive effects on abundance and body condition of tit species. Oikos 126, 863–873. https://doi.org/10.1111/oik.03476 (2017).

    Article 

    Google Scholar 

  • Österblom, H., Olsson, O., Blenckner, T. & Furness, R. W. Junk-food in marine ecosystems. Oikos 117, 967–977 (2008).

    Article 

    Google Scholar 

  • Dwyer, G. K., Stoffels, R. J. & Pridmore, P. A. Morphology, metabolism and behaviour: responses of three fishes with different lifestyles to acute hypoxia. Freshw. Biol. 59, 819–831. https://doi.org/10.1111/fwb.12306 (2014).

    Article 
    CAS 

    Google Scholar 

  • Hubel, T. Y. et al. Energy cost and return for hunting in African wild dogs and cheetahs. Nat. Commun. 7, 11034 (2016).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ip, Y. K., Lim, C. K., Lee, S. L., Wong, W. P. & Chew, S. F. Postprandial increases in nitrogenous excretion and urea synthesis in the giant mudskipper Periophthalmodon schlosseri. J. Exp. Biol. 207, 3015–3023 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wilkie, M. P. Mechanisms of ammonia excretion across fish gills. Comp. Biochem. Physiol. A Physiol. 118, 39–50 (1997).

    Article 

    Google Scholar 

  • Yamamoto, T. et al. Self-selection of diets with different amino acid profiles by rainbow trout (Oncorhynchus mykiss). Aquaculture 187, 375–386 (2000).

    Article 
    CAS 

    Google Scholar 

  • Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. J. P. B. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. J. Pharmacol. Pharmacother. 8, e1000412 (2010).

    Google Scholar 


  • Source: Ecology - nature.com

    Improving health outcomes by targeting climate and air pollution simultaneously

    Horses discriminate human body odors between fear and joy contexts in a habituation-discrimination protocol